

Monitoring, evaluation and reporting program

Assessing the condition of estuaries and coastal lake ecosystems in NSW

Tony Roper¹ Bob Creese² Peter Scanes¹ Kerryn Stephens¹ Robert Williams² Jocelyn Dela-Cruz¹ Geoff Coade¹ Bruce Coates¹ Martine Fraser³

¹ Office of Environment and Heritage

- ² Department of Primary Industries
- ³ Southern Rivers Catchment Management Authority

Monitoring, evaluation and reporting program Technical report series

Native vegetation Native fauna Threatened species Invasive species Riverine ecosystems Groundwater Marine waters Wetlands Estuaries and coastal lakes Soil condition Land management within capability Economic sustainability and social well-being Capacity to manage natural resources

© 2011 State of NSW and Office of Environment and Heritage

The State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs.

The Office of Environment and Heritage (OEH) has compiled this technical report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs.

Published by:

Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (environment information and publications requests) Phone: 1300 361 967 (national parks, climate change and energy efficiency information, and publications requests) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: info@environment.nsw.gov.au Website: www.environment.nsw.gov.au

Report pollution and environmental incidents

Environment Line: 131 555 (NSW only) or info@environment.nsw.gov.au See also www.environment.nsw.gov.au

This publication may be cited as:

Roper T, Creese B, Scanes P, Stephens K, Williams R, Dela-Cruz J, Coade G, Coates B & Fraser M 2011, Assessing the condition of estuaries and coastal lake ecosystems in NSW, Monitoring, evaluation and reporting program, Technical report series, Office of Environment and Heritage, Sydney.

ISBN 978 1 74293 338 2 OEH 2011/0717 First published November 2011; republished with minor corrections December 2011, June 2012

Acknowledgements

The authors wish to acknowledge staff from the Office of Environment and Heritage (OEH), and the NSW Natural Resources Commission (NRC) who have been past members of the estuaries theme team since it was formed in August 2006. These members include Alex Meehan (ex-OEH), and David Rissik (ex-NRC).

Others who provided guidance and feedback during the process of preparing the State of the catchments (SOC) 2010 reports and this supporting technical report include Klaus Koop (OEH), Len Banks (ex-OEH), Peter Wright (ex-OEH), John Williams (NRC), Liz DeVries (Southern Rivers CMA) and Gavin Doyle (Hunter–Central Rivers CMA).

Technical support in the gathering and collation of spatial data using a Geographical Information System was provided by staff from OEH including Ben Turner, Will Dorrington and Warwick Hehir (ex-OEH) and by Jon Sayers from the NSW Office of Water. Mark Littleboy from OEH undertook the modelling of catchment rainfall runoff for the 184 estuaries assessed.

Thanks are extended to Christine Crawford (University of Tasmania) and David Rissik (now Griffith University) for reviewing this document and providing valuable comments.

In particular we would like to thank Jim Armstrong (ex-OEH) for the effort spent in compiling and archiving water quality data from local councils along the NSW coastline, NSW Government agencies, universities, water and power authorities and consultants.

Contents

Sumr	mary		viii
1.	Introd	duction	1
	1.1	NSW natural resources MER strategy	1
	1.2	Natural Resources Commission	2
	1.3	Purpose of this report	3
	1.4	Report format	4
2.	Moni	toring program objectives	6
	2.1	Comparable monitoring programs	6
	2.2	Surveillance monitoring	7
	2.3	Management-oriented monitoring	8
	2.4	Management questions	8
3.	Estua	ry definition	
	3.1	Downstream boundary	
	3.2	Upstream boundary	13
	3.3	Lateral boundary	13
	3.4	Estuary surface area	13
	3.5	Estuary catchments	
	3.6	Location and identifier	
4.	Conte	extual data	23
	4.1	Morphometry	
	4.2	Catchment area	
	4.3	Hydrology	
	4.4	Hydrodynamics	
5.	Estua	ry classification	
	5.1	Purpose of classification	
	5.2	Existing classification systems	51
	5.3	Eutrophication indicator response classification	53
	5.4	Macrophyte classification	72
	5.5	Fish assemblage classification	73
	5.6	Future direction for classification	76
6.	Cond	ition data	77
	6.1	Chlorophyll a and turbidity	
	6.2	Macrophytes	
	6.3	Fish	
7.	Refer	ence conditions and scoring classes	
	7.1	Chlorophyll a and turbidity	
	7.2	Macrophytes	
	7.3	Fish	
8.	Resul	ts of sampling programs	
	8.1	Chlorophyll a and turbidity	
	8.2	Macrophytes	

	8.3	Fish	117
	8.4	Condition ratings for NSW estuaries	120
9.	Pressu	ıre data	126
	9.1	Sources of pressure data	126
	9.2	Criteria for selecting estuary pressures	126
	9.3	Ports, bays and harbours	135
	9.4	Pressure indicator correlation	135
	9.5	Indicator scoring classes	135
	9.6	Cleared land	135
	9.7	Population density	136
	9.8	Freshwater flow	138
	9.9	Sediment input	140
	9.10	Nutrient input	142
	9.11	Disturbed habitat	144
	9.12	Tidal flow	147
	9.13	Fishing	148
	9.14	Climate change	149
	9.15	Distribution of estuary pressures	150
	9.16	Summary of condition and pressure scoring criteria	151
	9.17	Comparison of scoring classes	151
	9.18	Estuary pressure ratings for NSW estuaries	151
10.	Condi	tion and pressure indices	159
	10.1	Developing an index	159
	10.2	Index of estuary condition	159
	10.3	Index of estuary pressure	161
	10.4	Confidence levels	161
11.	Data r	nanagement	164
12.	Recon	nmendations for improvement	167
13.	Refere	ences	172
	Refere	ences used to source EMC data	180
Appe	endix 1	Catchments of ports, bays and harbours	183
Appe	endix 2	Hydrographic surveys	187
Appe	endix 3	Estuary morphometric parameters	189
Appe	endix 4	Australian land-use and management classification version 6	192
Appe	endix 5	Land-use classes for 2CSalt hydrology models	193
Appe	endix 6	Land-use classes for pollutant export models	203
Appe	endix 7	Current catchment land-uses	204
Appe	endix 8	Catchment hydrology (1975-2007)	208
Appe	endix 9	Hydrodynamic attributes for mostly open estuaries	210
Appe	endix 10	Sample counts of water quality monitoring data	214
Appe	endix 1	Summary statistics for chlorophyll a	216
Appe	endix 12	2 Summary statistics for turbidity	218
Appe	endix 13	3 Data collection protocols	220

Appendix 14	Comparison of laboratory extracted and fluorometric chlorophyll concentrations	238
Appendix 15	Seagrass, mangrove and saltmarsh areas	243
Appendix 16	Total Nitrogen load and chlorophyll a dataset	246
Appendix 17	Metric scores for Estuarine Fish Community Index	247
Appendix 18	Estuary pressures identified in catchment action plans	251
Appendix 19	Potential pressure indicators for each stressor	253
Appendix 20	Raw pressure data	258
Appendix 21	Normalised pressure data	262
Appendix 22	Comparison of scoring classes for pressures	264
Appendix 23	Data availability for NSW estuaries	

Figures

Figure S1:	Condition ratings for NSW estuaries	xi
Figure S2:	Pressure ratings for NSW estuaries	xii
Figure 1:	Comparison of estuary surface area from six inventories	15
Figure 2:	Location of the estuary catchments of NSW	
Figure 3:	Example hypsometry for Smiths Lake	31
Figure 4:	Comparison of estuary surface area and volume	32
Figure 5:	Correlations between estuary volume and surface area for different	
	geomorphic types	33
Figure 6:	Comparison of estuary areas from merged DEMs and MER program API	34
Figure 7:	Land-use map for Cudgera Creek	
Figure 8:	Land-use map for Tomaga River	39
Figure 9:	Mean annual rainfall in NSW coastal catchments	41
Figure 10:	Comparison between mean annual measured and modelled streamflow	42
Figure 11:	Rainfall and pre-European/current land-use runoff coefficients	43
Figure 12:	Rainfall event frequency at Milton Post Office	49
Figure 13:	Dilution and flushing for intermittently and permanently open systems	55
Figure 14:	Dilution factor and flushing time for Roy et al. (2001) types 1, 2 and 3	55
Figure 15:	Dilution factor and flushing time for Roy et al. (2001) type 4	56
Figure 16:	Conceptual model of chlorophyll response in the three generic estuary types	58
Figure 17:	Conceptual model for nutrient processing within an estuary	59
Figure 18:	Conceptual models based on energy and geomorphology (Heap et al. 2001)	67
Figure 19:	Comparison of nutrient areal loading and chlorophyll response	69
Figure 20:	Generalised stressor-response models	71
Figure 21:	Geomorphic classification of Australian estuaries (Heap et al. 2001)	73
Figure 22:	The bioregions used for fish sampling (after Pease 1999)	75
Figure 23:	Load-response relationships with amended chlorophyll classification system	76
Figure 24:	Box plot of chlorophyll a for lake class	85
Figure 25:	Box plot of chlorophyll a for river class	85
Figure 26:	Box plot of chlorophyll a for lagoon class	
Figure 27:	Box plot of turbidity for lake class	86

Box plot of turbidity for river class	87
Box plot of turbidity for lagoon class	87
Distribution of macrophytes in Brunswick River (from Williams et al. 2006)	98
Data distributions of seagrass, mangrove and saltmarsh extent and change	99
Median chlorophyll a concentrations by load and estuary class	106
Population change in estuary catchments	138
Distribution of estuaries within pressure scoring classes	150
Condition ratings for NSW estuaries	162
Pressure ratings for NSW estuaries	163
Comparison of data availability by data type	164
	Box plot of turbidity for river class Box plot of turbidity for lagoon class Distribution of macrophytes in Brunswick River (from Williams et al. 2006) Data distributions of seagrass, mangrove and saltmarsh extent and change Median chlorophyll a concentrations by load and estuary class Population change in estuary catchments Distribution of estuaries within pressure scoring classes Condition ratings for NSW estuaries Pressure ratings for NSW estuaries Comparison of data availability by data type

Tables

Table 1:	Estuaries in NSW	17
Table 2:	Potential data types and indicators available for reporting	24
Table 3:	Contextual data required for interpretation of indicators	29
Table 4:	Roy et al. (2001) classification scheme	52
Table 5:	Stages of sediment infilling (Roy et al. 2001)	52
Table 6:	Comparison of classification schemes	60
Table 7:	Classification system for chlorophyll response	62
Table 8:	Comparison of classification systems	64
Table 9:	Comparison of NSW indicators with national indicators	77
Table 10:	Standard information requested from custodians of water data	80
Table 11:	Criteria for assessing reliability of water quality data	82
Table 12:	Data quality scores for KEVIN water quality data	83
Table 13:	Estuaries sampled for chlorophyll a and turbidity	90
Table 14:	Estuaries of the Sydney region with time series macrophyte data (DPI unpubl)	95
Table 15:	Estuaries outside of Sydney with time series macrophyte data	95
Table 16:	EBS data used in analyses for the northern bioregion	103
Table 17:	EBS data used in analyses for the southern bioregion	104
Table 18:	Reference estuaries for calculation of trigger values	108
Table 19:	Comparison of chlorophyll a trigger values	109
Table 20:	Comparison of turbidity trigger values	109
Table 21:	Metrics used in the EFCI (from Harrison & Whitfield 2004, 2006)	113
Table 22:	Metric scoring thresholds for fish assemblages	115
Table 23:	Metric scoring criteria for NSW estuaries	116
Table 24:	Scoring classes for fish assemblages in NSW estuaries	118
Table 25:	Condition rating of estuaries in Northern Rivers region	121
Table 26:	Condition rating of estuaries in Hunter-Central Rivers region	122
Table 27:	Condition rating of estuaries in Hawkesbury–Nepean and	100
T	Sydney Metropolitan regions	
Table 28:	Condition rating of estuaries in Southern Rivers region	
Table 29:	Stressors and pressures for each condition indicator	128

Table 30:	Estuary pressures and stressors with data likely to be available state-wide	131
Table 31:	Correlation matrix for pressure variables	135
Table 32:	Data distribution for cleared land	136
Table 33:	Data distribution for population density	137
Table 34:	Data distribution for freshwater flow increases	139
Table 35:	Data distribution for water extraction	140
Table 36:	Typical EMCs for TSS in catchment runoff	140
Table 37:	Data distribution for sediment exports	142
Table 38:	Typical EMCs for TN in catchment runoff	142
Table 39:	Typical EMCs for TP in catchment runoff	143
Table 40:	Data distribution for nutrient exports	144
Table 41:	Foreshore structure dimensions	144
Table 42:	Data distribution for foreshore structures	147
Table 43:	Data distribution for aquaculture leases	147
Table 44:	Data distribution for entrance opening level	148
Table 45:	Data distribution for fish catches	149
Table 46:	Potential impacts of climate change	149
Table 47:	Summary of condition and pressure metrics and scoring classes	152
Table 48:	Pressure rating of estuaries in Northern Rivers region	154
Table 49:	Pressure rating of estuaries in Hunter–Central Rivers region	155
Table 50:	Pressure rating of estuaries in Hawkesbury–Nepean and	
	Sydney Metropolitan regions	
Table 51:	Pressure rating of estuaries in Southern Rivers region	157
Table 52:	Data availability and management	166

Summary

This report describes the scientific methodology used to generate the State of the catchments (SOC) 2010 reports on the condition of estuaries in New South Wales and the pressures influencing their condition. This information aims to improve the confidence of government in deciding how to prioritise investment of available financial resources and introduce new policies, strategies or plans to better manage and protect estuary health.

The NSW Government has set a state-wide natural resource management (NRM) target for estuaries that 'By 2015 there is an improvement in the condition of estuaries and coastal lake ecosystems' (NRC 2005). The estuaries target is one of 13 natural resource targets recommended by the Natural Resources Commission (NRC 2005) and, in 2006, adopted by the NSW Government.

Data collected for the SOC 2010 reports provide an initial baseline of estuary condition and pressure against which future change can be assessed and will assist in effective reporting against the state-wide estuaries target. This information will be used to inform decision-making on policy, investment and management priorities.

Four estuary SOC reports have been prepared for the NSW coastline based on the geographic boundaries of the catchment management authorities (CMAs) in NSW. The four reports cover the Northern Rivers, Hunter–Central Rivers, Hawkesbury–Nepean and Sydney Metropolitan (combined) and Southern Rivers CMA regions.

A number of condition indicators were adopted focusing on estuarine biota, as the health of plants and animals reflects the combined effect of pressures acting on the ecosystem. Indicators used were phytoplankton (micro-algae) biomass measured as chlorophyll a; seagrass, mangrove and saltmarsh extent; and fish communities. Turbidity, as a measure of water clarity, was also reported as this has a direct bearing on the biota.

Initially, a comprehensive data trawl was carried out to make best use of available information on estuary condition. Data were sought from NSW Government agencies, local councils, universities, water and power authorities and consultants. Of the 32 coastal councils, two-thirds are actively involved in gathering data on the water quality of estuaries.

Concurrent with the condition data trawl, extensive datasets were collated and compiled on various physical and environmental attributes. These contextual data are essential for developing classification schemes that group estuaries into similar types for the purpose of stratifying any new sampling programs and for developing reference conditions for each estuary type against which health can be gauged. Contextual data are also needed for normalising pressures so that meaningful comparisons can be made of the relative pressures between estuaries.

Estuaries were defined from the 1:25,000 topographic map series available from Land and Property Information (LPI) within the Department of Finance and Services. Waterway areas behind the NSW coastline that are connected permanently or intermittently to the ocean were defined as an estuary and the name confirmed with the Geographical Names Board. Tributaries flowing into ports, bays and harbours were identified as separate estuaries giving a total of 184 systems along the coast. The estuary boundaries were extracted from the LPI map series and merged with maps of seagrass, mangrove and saltmarsh prepared by the Department of Primary Industries (DPI) (Williams et al. 2006). Spatial mapping of catchment boundaries prepared for an earlier stressed rivers assessment project (DLWC 1998) was refined from the topographic maps particularly near estuary entrances. Raw data from historical hydrographic surveys, gauging of tidal flows, water level recorders, rainfall and evaporation records, earlier classification schemes and the new spatial layers were accessed and used to generate contextual data on geomorphic type and opening regime; estuary perimeter, surface area, depth and volume; and tidal planes, prisms and flushing times. 2CSalt catchment rainfall runoff models were developed for all 184 estuaries calibrated with flow data from 78 gauging stations and used to generate monthly time series of runoff. The capacity of the volume of water in each estuary to dilute catchment inflows was then calculated.

Two of the main factors controlling the estuary phytoplankton response to catchment loads of nutrients and sediments are dilution capacity and flushing time. These two factors were able to be quantified for all estuaries and a chlorophyll response-based classification scheme developed. Estuaries grouped into three main types which were designated as lakes, rivers and lagoons with associated conceptual models of the chlorophyll a response to catchment loads. The 'lake' class included bays, drowned river valleys and lakes either permanently or intermittently open, 'river' included mature barrier river estuaries all of which were permanently open and 'lagoons' included intermittently open lagoons and creeks. A similar classification scheme for macrophytes was not attempted due to lack of data. For fish communities, earlier statistical analysis classified estuaries into three bioregions defined by latitude, and three types: permanently open riverine barrier estuaries and drowned river valleys; large barrier lagoons and predominantly open lakes and lagoons; and predominantly closed lakes and lagoons (Pease 1999). As might be expected, this classification is different to the chlorophyll a response-based classification.

After analysing existing datasets, new field sampling programs were designed for chlorophyll a, turbidity and fish, and implemented in 2007. For all programs estuaries are sampled across the three classification types and across the full disturbance gradient within each type. The water monitoring program involves sampling seven fixed estuaries every year to provide long-term trend data and to track inter-annual variability. A minimum of 27 roving estuaries are selected each year using a stratified random design and are sampled in each of the northern, central and southern parts of the coastline on a three-year rolling program. Fish were sampled for a pilot study in the central bioregion during 2008 and other existing data were used for the northern and southern bioregions. Standard sampling methods and protocols are documented to provide guidance for other parties gathering similar data in the future.

Using data to score the health of an estuary requires definition of what constitutes a healthy system (ie reference condition) and how the extent of deviation from the reference condition can be scored. Ideally, biological or ecological thresholds should be used to separate scoring classes but in their absence, the data distribution is frequently used to divide data up into ranges for scoring. The ranges can be based on equal intervals, equal percentiles, some other multiple of deviation from reference or else expert opinion. A mix of these methods was applied to scoring the SOC condition datasets. Confidence levels were applied to each dataset using set quality criteria.

Pressure data were collated on the basis of their known link to resource condition, availability for all estuaries, potential for gap-filling using empirical relationships, time required for collation and known reference condition. Datasets collated include cleared land, population, sediment and nutrient export change, catchment runoff change, foreshore structures, habitat disturbances, tidal flow change and commercial fishing. Scoring principles similar to those for condition data apply to pressure data.

Condition indicators were combined into an index of condition for each estuary, CMA region and state-wide with rules applied to the minimum number of indicators necessary before an index was calculated. Similarly, pressure indicators were combined into an index of pressure. The assessment found that across NSW, 27 estuaries were in 'very good' condition, 39 in 'good' condition, 23 'fair', nine 'poor', three 'very poor' and 83 had insufficient data to be rated (see Figure S1). For pressures, 48 estuaries rated as being under 'very low' pressure, 47 under 'low' pressure, 78 'moderate', 11 'high' and none as 'very high' pressure (see Figure S2). Within each of these overall state-wide indices, the ratings for individual condition and pressure indicators varied between estuaries and regions.

Data are held in a mix of spatial and tabular formats and are being managed in accordance with the Natural Resource and Environment Information Management Framework. A central element of the framework is metadata which has been prepared and loaded into the NSW Spatial Data Catalogue, which is managed by LPI on behalf of the NSW Government. Public access to the data will be provided.

A series of 42 recommendations has been made to improve the data collection and analysis for the next round of SOC reporting due in 2013. Improvements could be made to estuary definition, catchment hydrology, flushing time, estuary classification, condition data, reference conditions and scoring classes, pressure indicators and indices, and data management. Data collected for the other 12 state-wide NRM targets should be assessed for usefulness in generating pressure data for estuaries, and conversely, using estuarine data to assist with the other targets.

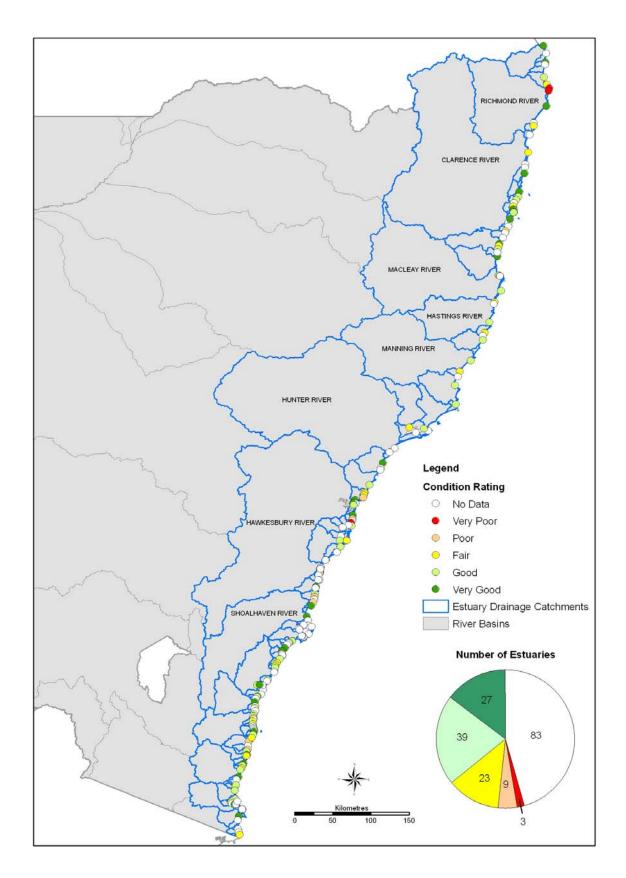
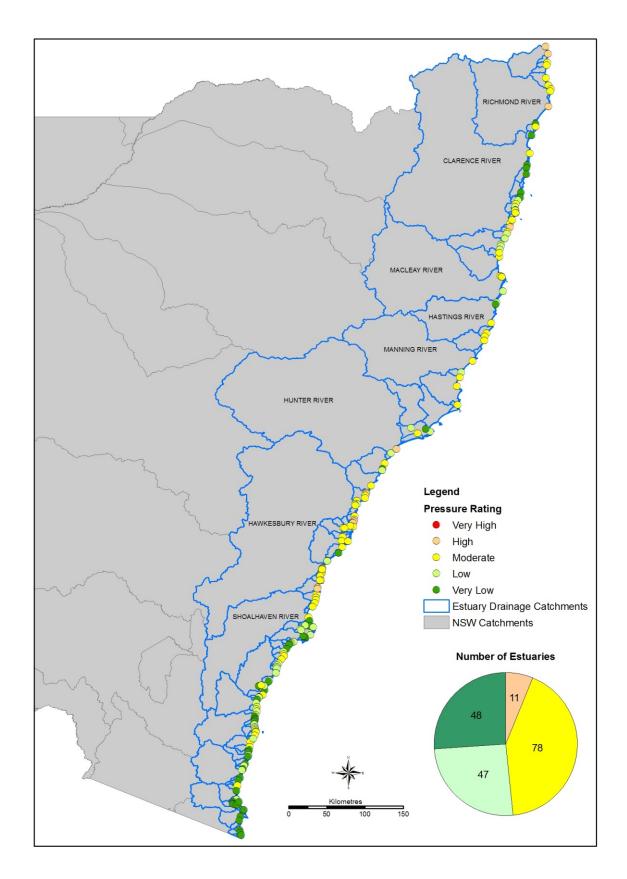



Figure S1: Condition ratings for NSW estuaries

Figure S2: Pressure ratings for NSW estuaries

1. Introduction

This report is the technical document underpinning SOC reports on NSW estuary condition and pressures. The SOC reports are based on the geographic boundaries of regional CMAs in NSW. In the case of estuaries there are four SOC reports covering five coastal CMA regions: Northern Rivers, Hunter–Central Rivers, Hawkesbury–Nepean and Sydney Metropolitan combined, and Southern Rivers. This technical document and the SOC reports are a collaborative effort between NSW Government agencies and the CMAs and represent the first regionally based assessment of estuary condition and pressures along the coastline.

A number of new field sampling programs were initiated in 2007 that strategically targeted data collection critical to the reporting process. As such, the reports present an initial baseline of estuary condition and pressure against which future change can be assessed. The monitoring programs established are ongoing to inform future SOC reports on a three-yearly cycle. This will enable reporting against the following state-wide NRM target set by the NSW Government:

'By 2015 there is an improvement in the condition of estuaries and coastal lake ecosystems'.

This target is one of 13 natural resource targets recommended by the Natural Resources Commission (NRC) in a standard and targets document published in September 2005 (NRC 2005).

1.1 NSW natural resources MER strategy

The MER strategy was prepared by the Natural Resources and Environment (NR&E) CEO Cluster of the NSW Government in response to the NRC standard and targets and was adopted in August 2006. The purpose of the strategy is to refocus the resources of NSW natural resource and environment agencies and coordinate their efforts with CMAs, local government, landholders and other natural resource managers to establish a MER system on natural resource condition (NR&E CEOs 2006).

A NSW MER system for natural resources should provide access to resource condition data, and periodic formal reports evaluating that data, to inform the policy, investment and best practice management decisions made by natural resource managers across NSW.

The strategy specified that SOC reports be prepared to provide a preliminary assessment of the condition of natural resources in each catchment. For estuaries, this will enable comparison of the condition of the state's estuaries to each other as well as regionally and state-wide. The strategy also required SOC reports to:

- inform investment decisions within and between CMA regions
- inform other natural resource managers' investment decisions in each region
- assess progress towards catchment targets.

These multiple objectives of condition assessment, investment priorities and target reporting provided the basis for the monitoring design process.

1.2 Natural Resources Commission

1.2.1 Indicators

A number of indicators for assessing progress towards the state-wide estuaries and coastal lakes target were proposed by the NRC and subsequently modified through a series of pilot studies in collaboration with government agencies (eg Scanes et al. 2007). The indicators focused on estuarine biology as the monitoring endpoints in preference to stressors and pressures which influence condition. A mix of indicator groups was finally adopted representing elements of the structure, function and composition of estuarine ecosystems and included:

- eutrophication
 - o microalgal abundance, measured as phytoplankton chlorophyll a
 - o macroalgal abundance
 - water clarity as turbidity
- habitat availability
 - o extent of seagrass
 - o extent of mangroves
 - o extent of saltmarsh
- fish assemblages
 - o species diversity and composition (four metrics)
 - species abundance (two metrics)
 - nursery function (four metrics)
 - trophic integrity (four metrics).

1.2.2 Background

Input to the NRC for development of the indicators was provided by an Independent Scientific Expert Working Group reporting directly to the NRC (ISEWG 2005).

In response to the NRC standard and targets report, the NR&E CEO Cluster Group requested implementation plans setting out actions to monitor each NRC target be prepared by inter-agency Indicator Working Groups (IWGs). These IWGs generally concurred with the indicators recommended by the NRC with minor modifications and progressed to the stage of costing the required data collection for methods development and five years of monitoring.

To check the efficacy of designs, the NR&E Cluster Group established three Scientific Peer Review Panels comprised of recognised experts from across Australia. The Review Panels raised a number of concerns across all IWG plans including the need for:

- visual conceptual models
- complementary pressure and stressor indicators for early warning of change and for causality inference
- consideration of scale issues including spatial, temporal and biological organisation
- specification of data collation, analysis, interpretation and reporting methods and the influence of effect size detection on costs (Abal et al. 2005).

Issues raised by the Review Panels that were specific to the estuaries and coastal lakes theme included the following:

- Indicators should reflect short- and long-term trends, as well as state-wide and catchment-wide
- There is a need to recognise high variability in estuarine systems and consider the different types of catchment, estuary geomorphic and marine environments and temporal factors influencing variability
- The definition of 'unacceptable' condition needs to be made explicit
- A suite of freshwater, estuary and marine indicators is required as adopted for the South East Queensland Ecosystem Health Monitoring Program.

1.2.3 National processes

At the national level, the Intergovernmental Coastal Advisory Group (ICAG) coordinated a process of reaching national agreement on a set of resource condition indicators in association with the (former) National Land and Water Resources Audit (NLWRA) and the (former) Department of Environment and Heritage. A national workshop was held in February 2006 from which emerged a number of key themes which included the following (Thorman 2006):

- Clarity is required as to what the policy and management questions are, and what information is needed to provide answers
- There is a need to document the extent of existing information
- Further work is required to develop social and economic or pressure indicators to provide context for the resource condition indicators.

The issue of 'contextual' data was also raised in a report commissioned by the NLWRA (BTG 2004a). While being broadly defined by the Beaten Track Group as data commonly needed for interpretation, aggregation and/or mapping, contextual data for this technical report is taken to mean variables that assist in either:

- defining a resource's classification in accordance with a recognised system
- stratifying sampling designs to reduce statistical variability and costs of data
- interpreting any causal linkages between condition and the forcing variables describing drivers, pressures and stressors or else between condition and variables describing impacts eg socio-economic.

In response to the MER strategy and these wide-ranging external reviews and processes, the NRC worked with inter-agency theme teams to develop a number of pilot SOC reports. These teams were drawn from across the former NSW Government Departments of Environment and Climate Change, Water and Energy, and Primary Industries over a two-year period from August 2006. One of the pilots was for estuaries and coastal lakes, from which the final products described in this report have been derived.

1.3 Purpose of this report

The purpose of this report is to present a broad baseline picture of the condition of estuaries within NSW as at January 2009 and to describe the methods for collecting, analysing and interpreting the data used to derive the condition. In addition, the main human-induced pressures acting on each estuary are detailed to provide insight into the possible causes driving the condition. The report

uses a mix of existing and newly collected data to compare the condition and pressures between estuaries, as well as between regions and across the state. When monitoring is at a fine enough scale, comparisons are feasible between tributaries or specific sites within an estuary.

As the intent behind monitoring is to illuminate decision-making, the program has been designed to test the response of estuaries to the key pressures or stressors driving condition wherever possible, for example land-use. If relationships can be established between drivers and response, predictions can be made about the condition of those estuaries without monitoring data. The predictive models can then be used for setting priorities for action across all estuaries and at a scale (state-wide to site-specific) appropriate to the resolution of the data and size of the issue.

This testing of *a priori* management hypotheses can be complemented by multivariate statistical analysis of potential stressor-response relationships as more monitoring data become available. Most stressors and responses are not one-to-one but are interdependent so that multiple stressors act and interact to affect different elements of an estuary's biota and ecology. Stressors will act at different spatial and temporal scales which need to be accounted for in any analysis as well as in the design of any accompanying management action.

In NSW an integral component of the NRM framework has been the establishing of targets by the NSW Government requiring an improvement in the condition of estuarine ecosystems by 2015. In addition to informing decision-making, another aim behind monitoring of estuary condition is therefore to enable reporting of progress towards the state-wide trend target.

1.4 Report format

Chapter 2 of this report sets out the objectives of the monitoring program after reviewing comparable overseas programs, and the management questions that the program is designed to answer.

Chapter 3 details the coastal waterbodies in NSW that were defined as estuaries, their location and extent and how they were compiled into an inventory.

Chapter 4 presents the physical and environmental contextual data required to develop classification schemes, interpret resource condition and normalise pressures for comparison between estuaries. Contextual data are provided on geomorphology, hydrodynamics, catchment characteristics and hydrology.

Chapter 5 reviews the purpose of classification into estuary types and the range of existing schemes. The methods adopted to classify estuaries by their response of each of the eutrophication, habitat and fish indicators to anthropogenic stress, particularly nutrient inputs and catchment disturbance, are described.

Chapter 6 presents the results of an extensive trawl for resource condition data and how the data were used to design sampling programs. The designs are detailed together with sampling methods and protocols.

Chapter 7 describes how the data collated and collected were used to generate reference conditions and develop scoring classes for assessing the extent of deviation of condition from reference.

Chapter 8 presents the results of the sampling programs initiated for the SOC reporting, together with any historic data used in the assessment process.

Chapter 9 reviews potential sources of data on estuary pressures and criteria for selecting pressures for which data collection was to be initiated. The results of the data compilation are summarised, scoring classes defined and estuary pressures rated using those classes.

Chapter 10 covers the development of an initial set of indices for condition and pressure to enable comparisons to be made at estuary, regional and state-wide levels. Confidence levels were assigned to each dataset.

Chapter 11 details the management of data and information including metadata and public access.

Chapter 12 gives recommendations for improving datasets, data analysis, classification and reference systems, index development and integration across themes.

Chapter 13 lists references followed by appendices of various tables, maps and protocols.

2. Monitoring program objectives

2.1 Comparable monitoring programs

In the course of developing a conceptual basis and monitoring objectives for the NSW estuary monitoring program, a number of similar programs elsewhere in the world were reviewed, focusing on the USA and Europe. A snapshot of these programs includes the following:

- The **State of the Nation's Ecosystems 2008** (Heinz Center 2008) takes the approach of reporting on condition and trend of ecosystems in the USA using publicly-available data and only comparing condition with a standard where it already exists. It is restricted to a presentation of scientific data and does not attempt to rate condition on a comparative basis, present pressures or link condition to management
- The National Estuary Program Coastal Condition Report (US EPA 2008) presents the condition of estuaries across the USA. Data sources are from an unbiased, quality-assured monitoring program implemented nationally by the Environmental Protection Agency (EPA) as well as from individual National Estuary Programs (NEPs) which are estuary-specific monitoring programs run by local partnerships. For the national program, a number of water and sediment quality, benthic and fish tissue contaminant indicators are allotted into the categories 'good', 'fair' or 'poor', based on biological or ecological thresholds wherever possible and by coarse scale regions. Indices of water, sediment, benthos and fish are reported for each estuary as well as an overall condition rating. Comparisons are then made between estuaries and regions. Population density is reported but no other pressures or management action. For the individual NEPs, local responses are reported together with likely stressors
- The National Estuarine Eutrophication Assessment (NEEA) in the USA uses the Assessment of Estuarine Trophic Status (ASSETS) methodology to report on four indices describing the pressures taking into account natural system susceptibility (*Overall Human Influence*), a symptoms-based evaluation of eutrophic state (*Overall Eutrophic Condition*), expected ecological response from future pressures (*Definition of Future Outlook*) and a synthesis combining each of pressure, state and future ecological response into an overall colour-coded classification grade of 'high', 'good', 'moderate', 'poor' or 'bad' (Bricker et al. 1999; Bricker et al. 2003; Bricker & Ferreira 2008). The overall eutrophic condition is based on five indicators: chlorophyll a, macroalgae, dissolved oxygen, seagrass distribution and nuisance/toxic algal blooms. The concept of susceptibility is introduced by using estuary dilution and flushing characteristics as 'filters' to modulate the pressure and expected future response indices. State is assumed to respond to pressure but modulated by estuary typology. Other filters could include the light regime (Devlin et al. 2007).

More recent developments for the NEEA program are type classification based on physical and hydrologic characteristics that influence the expression of nutrient-related impacts such as phytoplankton blooms (Whitall et al. 2007) and the introduction of socio-economic costs linked to eutrophication impacts.

The stated objective of the ASSETS approach is to provide relevant information on status, causes of observed problems and probable future changes in condition, to facilitate making appropriate management decisions. The ASSETS method recognises that the information

provided can be used at a range of scales. At large continental and regional scales, management and research can be prioritised thereby maximising cost efficiency in the use of limited resources. At smaller scales the approach can be used in conjunction with other models to gain insight into system behaviour and predict potential problems before they occur. The NEEA program managers believe that the combination of better type classification and socioeconomic cost evaluation will provide an even stronger basis for successful management of estuaries in the USA as well as Europe and Asia (Bricker & Ferreira 2008)

• The **European Water Framework Directive** (WFD) establishes a framework for the protection of groundwater, rivers, lakes, estuaries and coastal waters. It has the objective of achieving at least Good Ecological Status (on a scale of 'high', 'good', 'moderate', 'poor' and 'bad') for all waters by 2015. Member States must establish monitoring plans to determine Ecological Status through the assessment of a range of Biological Quality Elements (BQEs) and Supporting Quality Elements (SQEs). BQEs include phytoplankton, macroalgae, aquatic plants (seagrass and saltmarsh), benthic invertebrates and fish (Best et al. 2007). SQEs include physico-chemical (transparency, thermal conditions, oxygen conditions, salinity and nutrient concentrations) and hydromorphological (eg freshwater flow) attributes.

Status is assessed by comparing the state of the quality elements with reference conditions in a pristine waterbody of the same typology. Expert rules can be used to integrate the individual quality element scores into an overall assessment of Ecological Status (Borja et al. 2009) although some interpretations of the WFD imply that the lowest of the quality element assessments should determine the overall Ecological Status (Borja et al. 2008). Should Ecological Status be assessed as moderate, poor or bad, Member States are to implement programs to achieve Good Ecological Status by 2015. The WFD also requires assessment of Heavily Modified Water Bodies which are ones with irreversible changes to their hydrogeomorphological character (eg a harbour). Status is to be assessed in terms of Good Ecological Potential (Borja & Elliot 2007).

Each of these assessment methods was reviewed and the most promising elements incorporated into the NSW estuary monitoring program. Management-oriented hypotheses have been used to drive the sampling design and develop predictive modelling frameworks that will aid policy, investment, planning and management decision-making at a range of appropriate scales.

2.2 Surveillance monitoring

Unless dramatic change occurs in catchments, very few ecological variables exist that will show significant change in less than several years (Nichols & Williams 2006). A monitoring period spanning up to ten years has been suggested as a minimum sensible target for detecting change in most ecological monitoring programs (Field et al. 2007). In traditional long-term surveillance monitoring, many different species, ecological characteristics or locations are monitored to satisfy many different purposes. Action is generally triggered following statistical confirmation of an adverse trend. This action can be immediate conservation efforts or a study into the cause of the decline. In either event, a problem arises with time lags between trend detection and management action which may mean irreversible damage and lost opportunities for early intervention.

2.3 Management-oriented monitoring

The alternative to surveillance monitoring is to use management-oriented hypotheses to drive the monitoring design (Nichols & Williams 2006). Steps involved will include collating and analysing existing data for patterns, processes and responses to the various stressors and pressures acting on the system. Best practice is to build conceptual models to facilitate understanding by scientists and managers of the key factors and interactions driving ecological responses. Classification into ecosystem types, each with their own conceptual model, is often required to represent significant differences in system processes and response to stress.

On the basis of a thorough assessment of the existing data, research literature and scientific/community expert opinion, hypotheses on how ecosystems will change under existing and future pressures can be developed. Monitoring design can then proceed with the best possible knowledge of the direction and extent of change to be detected. Data generated by monitoring should be analysed promptly and used to adaptively refine the sampling regime (Field et al. 2007).

The NRC and the MER strategy direct that any monitoring is to be explicitly linked to decisionmaking at as many scales as is practically feasible. Constraints to achieving this objective are those common to all monitoring programs which are the trade-offs required between the statistical certainty of the program and the available budget. Such constraints will necessarily influence the scale at which the data can be reliably interpreted and applied.

2.4 Management questions

2.4.1 Strategic level

At the strategic level, the questions for natural resource managers can be broadly grouped into the following (Brooks et al. 2006):

- How big is the problem (ie where is the resource and what is its condition)?
- Is it getting better or worse (ie which way is the trend going)?
- What is causing it (and is it natural or human-induced)?
- What can be done to fix the problem (ie how can we improve the health of the impaired system and what level of health can be maintained given current social choices on resource use)?
- Once action is taken, is management making a difference?
- How can any of the above be communicated to the community?

Brooks et al. (2006) proposed a taxonomy or hierarchy of indicators and grouped the types of management questions into the following categories:

- Condition assessment/state: snapshot of the current state of the ecosystem
- Performance evaluation: evaluating the effectiveness of management actions
- **Stressor diagnosis**: identification of factors causing a change in condition and demonstration of clear relationship between cause and condition
- **Communication to the public**: encouraging comprehension of condition in a clear and understandable form
- **Futures assessment**: estimating the probable trend in condition, or assessing the vulnerability of a system to a particular event or activity.

In addition to the management question, two other primary elements of the hierarchy were scale (spatial and temporal) and context (ie social choice of land-use). By specifying the appropriate management questions being asked, the spatial and temporal scale being reflected and the social choices being addressed, natural resource managers can choose indicators appropriate for their decision-making. A range of potential indicators was identified by Brooks et al. (2006) and then categorised according to how well they met each of the three elements of the hierarchy.

2.4.2 Operational level

Within these broadly based strategic management questions lie a more detailed sequence of interlinked operational management and scientific questions that correspond to various decision points in an NRM cycle. Questions in an approximate chronological order in the cycle could include the following:

Asset mapping

- Where is the resource and what is the extent of its assets?
- How can the assets be classified into groups exhibiting similar characteristics?

Condition assessment

- How do biological, chemical and physical processes affect the condition?
- What is the condition of the resource compared to standards, benchmarks or reference sites?
- What are the limits of acceptable change or ecological thresholds and how close is the current condition to a threshold?
- Is the condition changing and what is the direction and size of the trend?

Risk assessment

- What is the natural vulnerability of the resource to degradation?
- What pressures and stressors appear to be responsible for harm or deterioration?
- What pressures and threats are likely to arise in the future and how will they affect condition?
- What are the most significant threats that need to be addressed?

Management response

- What are the vision, biophysical and societal values and landscape use expectations of the community, industry and government?
- What are the objectives for management?
- What are appropriate targets for management to achieve?
- What options are available to achieve targets?
- How will the resource respond to the options?
- What are the benefits, costs and impacts of options and what tradeoffs are required?
- What is an acceptable option mix?

Performance review

- What indicators should be monitored to reflect option performance?
- Were the management objectives and targets achieved?
- To what extent did the management options contribute to target achievement?

- What was the influence of external factors?
- How can we improve the current management response mix?
- How can report findings be best presented?

Long-term surveillance monitoring programs generally target indicators of condition at the top of this sequence. Management-oriented monitoring of resource condition will select indicators across other elements of the management cycle to facilitate diagnosis of the causes of impairment, develop a predictive modelling capability and improve the effectiveness and timeliness of management decision-making. Performance monitoring may result in a different set of indicators being monitored to suit the management objectives of the activity being assessed.

2.4.3 Estuary monitoring program

The management questions for the NSW estuary monitoring program are:

- 1. Which coastal water bodies are defined as estuaries for inclusion in the monitoring program design?
- 2. What is the physical extent of estuaries in NSW?
- 3. Are existing estuary conceptual models and classification systems appropriate to NSW estuaries and if not, how should they be modified?
- 4. What constitutes good and poor condition?
- 5. What is the current condition of estuaries?
- 6. Is the condition changing and in what direction and at what rate?
- 7. What broad pressures and stressors appear to be responsible for the condition?
- 8. How do physical, chemical and biological processes affect the condition?
- 9. What makes some estuaries more vulnerable to degradation than others?

These questions address all the asset mapping and condition assessment stages of the NRM cycle. They also address some parts of each of the risk assessment and management response stages. If these questions are posed together, they will address the multiple objectives specified in the MER strategy requiring condition assessment, informing investment priorities at scales appropriate to the data and reporting progress towards state-wide targets. Reporting against CMA catchment targets will be feasible to the extent they align with the state-wide condition and trend targets of the NRC, which they tend to do for estuaries as shown by the following list of catchment targets:

Northern Rivers CMA: By 2016 there is an improvement in the condition of Coastal Zone natural resources.

Hunter–Central Rivers CMA: By 2016 improve or maintain the estuarine environments of the Hunter–Central Rivers CMA region.

Hawkesbury–Nepean CMA: Estuary marine condition – By 2016, there will be no decline, and where appropriate improvement, in estuarine and marine ecosystem functioning as reflected in a range of indicators that potentially includes:

- extent and condition of estuarine vegetation, freshwater inflows, algal blooms, water quality, soil condition (for estuarine)
- rocky reef spp, sewage discharges, industry groups implementing EMS, marine debris, extent of Marine Protected Areas (MPA) (for marine).

Sydney Metropolitan CMA: Estuaries and lakes – By 2016, there is an improvement in the condition of estuaries and coastal lake ecosystems.

Southern Rivers CMA: By 2016 the condition of coasts, estuaries and the marine environment is maintained or improved through active management, best management practice and strategic research.

Two of the five coastal CMAs, Northern Rivers and Southern Rivers, have initiated pilot programs testing indicators for reporting against their estuarine catchment targets. The indicators being investigated are similar to the state-wide targets but with the addition of other indicators of estuary structure, function or composition. The Hawkesbury–Nepean CMA has proposed a range of potential indicators of structure, function and composition in their catchment target and have specifically identified ecosystem functioning as a key element in that target.

3. Estuary definition

There are a number of definitions in the literature of what constitutes an estuary (see Edgar et al. 1999). The definition provided in the NSW Estuary Management Manual (NSW Govt. 1992) is 'any semi-enclosed body of water having an open or intermittently open connection with the ocean, in which water levels vary in a predictable, periodic way in response to the ocean tide at the entrance'.

There are many waterways shown on the 1:25,000 topographic map series from LPI that lead to the Tasman Sea. One estimate suggests that there are over 950 of these features (Williams et al. 1996), although hundreds of them are ephemeral in nature, draining only under wet conditions. On the basis of previous studies (West et al. 1985; Roy et al. 2001), between 130 and 150 waterways were thought to be large enough to retain standing water and therefore fell within the definition of an estuary.

For the purpose of the MER program, a waterway was identified as an estuary if it was shown as an area feature adjacent to the coastline in the 1:25,000 topographic map series for NSW. Any drainage lines adjacent to the coast that appeared only as line features were excluded. Waterway area features adjacent to the coastline that did not have either a permanent or intermittent connection to the ocean were also excluded.

3.1 Downstream boundary

The seaward limit of an estuary has various definitions. For example, NSW Govt. (1992) suggests there is a hydraulic boundary where topography ceases to affect tidal behaviour. This boundary may be difficult to define in the entrance of drowned river valleys where sill development is limited. Salinity distribution has also been used to define where the salinity of the transitional waters is substantially lower than the adjacent ocean water. For larger rivers, plumes may extend some distance offshore (WFD 2002).

For NSW estuaries where freshwater flows are relatively low and bar development is limited, the downstream boundary has been taken as the 'line between the land masses on each side of the entrance to an estuary' (Ketchum 1983). This line is provided on the LPI map series as a coastal Mean High Water mark, but was checked on-screen and adjusted where necessary to better reflect this definition.

For ports, bays and harbours where individual estuarine systems drain to a semi-enclosed waterway, each tributary and the semi-enclosed waterway has been defined as a separate estuary. Nine ports, bays and harbours with inflowing tributaries were identified (see Appendix 1 for maps):

- Port Stephens Myall River and Lakes, Karuah River, Tilligery Creek
- Broken Bay Brisbane Waters, Hawkesbury-Nepean River, Pittwater
- Port Jackson Lane Cove River, Middle Harbour Creek, Parramatta River
- Botany Bay Cooks River, Georges River
- Port Kembla Harbour Allans Creek
- Jervis Bay Callala Creek, Cararma Creek, Currambene Creek, Moona Moona Creek, Wowly Gully

- Ulladulla Harbour Millards Creek
- Batemans Bay Clyde River, Cullendulla Creek
- Twofold Bay Boydtown Creek, Curalo Lagoon, Fisheries Creek, Nullica Creek, Shadrachs Creek, Towamba River.

3.2 Upstream boundary

Tidal and mangrove limits have been defined through the collection of field data over a ten-year period from 1996 to 2005 (DNR 2006). The tidal limit was defined as the point along the estuary at which the water level no longer responded to the ocean tide. While vertical tidal movement must be present, this point can experience minimal salinity if freshwater flows are significant. For some upstream sites, vertical movement is constrained by structures such as weirs.

Mangroves occupy the fringe of intertidal shallows and grow in marine, estuarine and, to a limited degree, fresh water (DPI 2008). The mangrove limit is always downstream of the tidal limit. Mangroves are usually not found in estuaries with intermittently open entrances where water levels can be constantly elevated for extended periods of time.

3.3 Lateral boundary

NSW Govt. (1992) defines lateral boundaries in ecological terms rather than the hydraulic basis used for the downstream and upstream boundaries. The definition includes all wetlands inundated during extreme tidal or flood events. The 1:25,000 topographic map series from LPI will usually include seagrass in the waterway area, but mangrove and saltmarsh to varying degrees depending on water levels at the time of aerial photographs and operator interpretation. To address this issue, the waterway areas from the topographic map series were merged with maps of mangrove and saltmarsh produced over the last five years by DPI (Williams et al. 2006).

3.4 Estuary surface area

3.4.1 GIS operations

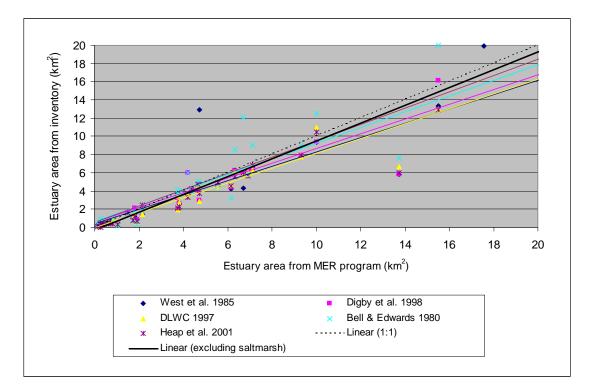
A detailed report is available on the GIS operations used to generate the composite data layer (see metadata on Estuaries in the NSW Spatial Data Catalogue). In summary:

- the water surface boundaries were derived from the LPI 1:25,000 topographic map polygons, which are assumed to approximate the high water mark
- the downstream boundary was defined as the line across the entrance mouth
- upstream estuary boundaries were extended up to the tidal limits defined by Manly Hydraulics Laboratory on the basis of DNR (2006). A nominal 1 m width was assigned to tributaries depicted as line features on the LPI maps to generate a single polygon for estuary area
- the DPI seagrass, mangrove and saltmarsh polygon layers were reconciled and merged with the LPI water surface layer so as to create consistent layers of water, seagrass, mangrove and saltmarsh. The combined area of water and macrophytes was defined as the total estuary surface area
- some portions of the coast are necessarily excluded as they drain directly to the Tasman Sea.

A total of 184 estuarine water surface polygons were found and digitised from the LPI map series.

3.4.2 Comparison with other inventories

There are a number of other inventories of NSW estuaries that have been prepared over the last 30 years. These inventories have generally contained estimates of estuary water surface area but have been prepared using a number of different mapping methods. The inventories include:


- an environmental inventory prepared for estuaries and coastal lagoons in NSW (Bell & Edwards 1980)
- an estuarine inventory for NSW prepared for the former Department of Agriculture (West et al. 1985)
- an Australian Estuarine Database prepared for the Commonwealth Government (Digby et al. 1998). The data are derived from a former inventory prepared by Bucher & Saenger (1989)
- a report prepared for the NLWRA containing a national geoscience database (Heap et al. 2001). Landsat TM satellite imagery with a spatial resolution of 25 m was used to map estuary geometry including area, perimeter, total length, maximum width, entrance width and entrance length
- a database maintained by the former Department of Land and Water Conservation (DLWC 1997). The main source of data on estuary water surface areas was the LPI 1:25,000 topographic map series.

A comparison was made between the areas calculated from the detailed mapping of 48 estuaries under the MER program and the previous five inventories as shown in Figure 1.

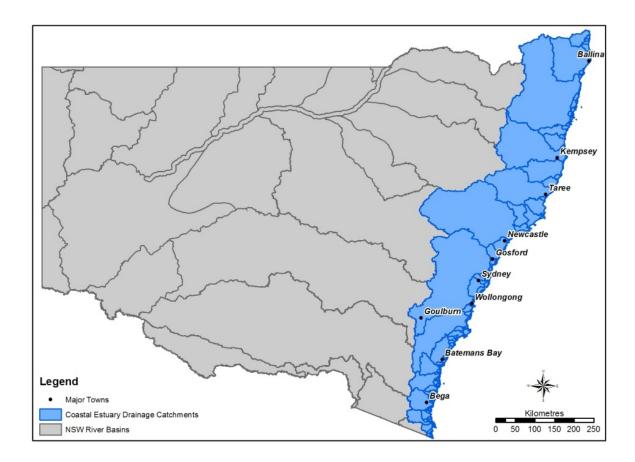
For the purposes of clarity, only 38 estuaries up to 20 km² in area (79 per cent of the 48 estuaries) have been shown. The 48 estuaries selected for the comparison are those for which bathymetry was available and gridded as discussed in Section 4.1.1. The mapping conducted for the MER program has generated areas mostly above those from previous inventories as it has included all areas of mangrove and saltmarsh mapped by DPI. Saltmarsh is known to colonise typically from Mean High Water up to Highest Astronomical Tide level. Also plotted as a single black line is the estuary area excluding saltmarsh which produces areas more consistent with previous inventories.

The most accurate source of information on estuary areas is that available through photogrammetry routinely conducted by Office of Environment and Heritage (OEH) since 1992. Photogrammetry is undertaken to sub-metre positional accuracy using the most recent aerial photography available, usually at a scale of 1:25,000, to produce a baseplan of the estuary being surveyed. Prior to 1992, a shoreline plot was generally generated using the LPI 1:25,000 topographic maps with a potential positional error of up to ±25 m.

A majority of estuaries have been the subject of photogrammetric analysis but the data have not been accessed for the MER program. However, it would be valuable for future SOC reporting to compare photogrammetric data with the areas derived for the MER program which were based on a merging of 1:25,000 waterbody areas from LPI and macrophyte areas from DPI.

Figure 1: Comparison of estuary surface area from six inventories

3.5 Estuary catchments


NSW coastal catchments have been previously digitised from the 1:25,000 topographic map series for the stressed rivers assessments produced for the NSW water sharing plans (WSPs). However, small estuaries adjacent to larger systems were often combined into a single catchment. In addition, the connection of the catchment boundary to the coastline was made between adjacent estuary entrances so as to fully cover the entire coastal land surface.

Using the catchments defined in the stressed rivers assessments as a starting point, on-screen digitising was employed to redefine and separate each individual estuary catchment down to the entrance. Any errors detected in catchment boundaries away from the entrance were also corrected.

The National Oceanic and Atmospheric Administration (NOAA) of the United States Department of Commerce further divide estuary catchments into those areas draining directly to the estuary (also known as the Estuarine Drainage Area [EDA]) and those draining to the catchment rivers and streams above the estuary tidal limits (also known as the Fluvial Drainage Area [FDA]) (Burgess et al. 2004). It is thought that inputs from the EDA affect estuary health to a greater extent than those from the FDA. This may not hold if the EDA is relatively small (NOAA 1990). Barton (2006) found a strong correlation between estuarine drainage area land-use and estuarine water and sediment quality in south-east Australian estuaries.

Digitising the extent of NSW estuarine catchments above and below the tidal limits has been completed to facilitate exploratory analysis of links between catchment land-use and estuary health. These data and analyses will be available for the next SOC reports.

Excluding small catchments that drain directly to the Tasman Sea (eg Bondi Beach), estuarine catchments in NSW (Figure 2) cover a total area of 127,154 km² (Table 1) or 15.8 per cent of the area of NSW. This portion of the state contains 82.1 per cent of the population (from 2006 Census – see Section 9.7.3).

Figure 2: Location of the estuary catchments of NSW

3.6 Location and identifier

Each estuary location has been mapped as a point feature representing the latitude and longitude at the midpoint of the line drawn across the estuary entrance.

An additional numbering system from one to 184 has been used to identify estuaries from north to south. Tributaries entering a port, bay or harbour have been numbered in an anti-clockwise direction with the port, bay or harbour as the last number in the group. Sorting estuaries using the north-south numbering from one to 184 will result in a different order to sorting by latitude.

The names assigned to individual estuaries were sourced from the Geographical Names Board. Table 1 shows the 184 estuaries in NSW by name, latitude and longitude, north-south identifier number, estuary and catchment areas, CMA and local government areas (LGAs). Ports, bays and harbours and their tributaries are shaded grey.

Table 1: Estuaries in NSW

	Entrance location			Estuary area ¹ (km ²)		Catchment	Total		
F - 1	L = (11		Nth- sth no.	Saltmarsh	Saltmarsh	area ² (km²)	area ³ (km²)	СМА	LGA(s) ⁴ covering estuary waterway
Estuary	Latitude (°S)	Longitude (°E)		excluded	included		. ,		
Tweed River	-28.1693	153.5562	1	21.95	22.72	1054.76	1077.48	NR⁵	Tweed
Cudgen Creek	-28.2564	153.5847	2	2.10	2.15	68.61	70.76	NR	Tweed
Cudgera Creek	-28.3596	153.5780	3	0.41	0.48	60.55	61.03	NR	Tweed
Mooball Creek	-28.3877	153.5700	4	0.52	0.53	109.14	109.68	NR	Tweed
Brunswick River	-28.5379	153.5581	5	3.28	3.59	226.34	229.93	NR	Byron
Belongil Creek	-28.6251	153.5916	6	0.19	0.27	30.41	30.68	NR	Byron
Tallow Creek	-28.6673	153.6216	7	0.12	0.12	5.34	5.46	NR	Byron
Broken Head Creek	-28.6968	153.6135	8	0.05	0.05	1.12	1.17	NR	Byron
Richmond River	-28.8766	153.5910	9	37.78	38.38	6861.84	6900.22	NR	Ballina, Byron, Lismore, Richmond Valley
Salty Lagoon	-29.0771	153.4376	10	0.16	0.16	3.57	3.73	NR	Richmond Valley
Evans River	-29.1128	153.4373	11	2.30	2.66	75.84	78.50	NR	Richmond Valley
Jerusalem Creek	-29.2145	153.3919	12	0.32	0.32	48.32	48.64	NR	Clarence Valley
Clarence River	-29.4268	153.3721	13	129.42	132.32	22055.11	22187.42	NR	Clarence Valley
Lake Arragan	-29.5651	153.3383	14	0.97	0.97	9.28	10.25	NR	Clarence Valley
Cakora Lagoon	-29.6007	153.3330	15	0.23	0.36	12.33	12.69	NR	Clarence Valley
Sandon River	-29.6728	153.3325	16	2.14	2.62	131.52	134.14	NR	Clarence Valley
Wooli Wooli River	-29.8878	153.2683	17	3.08	3.75	180.00	183.74	NR	Clarence Valley
Station Creek	-29.9494	153.2587	18	0.25	0.26	21.36	21.62	NR	Coffs Harbour
Corindi River	-29.9805	153.2318	19	1.32	1.90	146.44	148.34	NR	Coffs Harbour
Pipe Clay Creek	-30.0223	153.2069	20	0.01	0.01	1.63	1.64	NR	Coffs Harbour
Arrawarra Creek	-30.0582	153.1973	21	0.11	0.12	17.82	17.95	NR	Coffs Harbour
Darkum Creek	-30.0959	153.2004	22	0.06	0.06	6.11	6.17	NR	Coffs Harbour
Woolgoolga Lake	-30.0987	153.1993	23	0.16	0.16	21.02	21.18	NR	Coffs Harbour
Flat Top Point Creek	-30.1286	153.2047	24	0.02	0.02	2.57	2.59	NR	Coffs Harbour
Hearns Lake	-30.1320	153.2025	25	0.10	0.15	6.60	6.75	NR	Coffs Harbour
Moonee Creek	-30.2122	153.1614	26	0.28	0.41	41.11	41.52	NR	Coffs Harbour
Pine Brush Creek	-30.2516	153.1423	27	0.02	0.02	7.34	7.35	NR	Coffs Harbour
Coffs Creek	-30.2965	153.1391	28	0.46	0.46	24.04	24.50	NR	Coffs Harbour
Boambee Creek	-30.3546	153.1062	29	0.96	0.99	48.48	49.48	NR	Coffs Harbour
Bonville Creek	-30.3760	153.1004	30	1.50	1.66	113.47	115.13	NR	Coffs Harbour
Bundageree Creek	-30.4313	153.0758	31	0.00	0.00	10.12	10.13	NR	Coffs Harbour
Bellinger River	-30.5017	153.0313	32	8.02	8.16	1100.32	1108.49	NR	Bellingen
Dalhousie Creek	-30.5232	153.0281	33	0.07	0.08	6.26	6.33	NR	Bellingen
Oyster Creek	-30.5633	153.0175	34	0.14	0.14	16.78	16.92	NR	Bellingen, Nambucca

_	Entrance location		Estuary area ¹ (km ²)		Catchment Total				
Estuary	Latitude (ºS) Longitude (ºE)		Nth- sth no.	Saltmarsh excluded	Saltmarsh included	area ² (km²)	area ³ (km²)	СМА	LGA(s) ^₄ covering estuary waterway
Deep Creek	-30.6010	153.0116	35	1.08	1.72	89.80	91.53	NR	Nambucca
Nambucca River	-30.6483	153.0105	36	11.37	12.64	1298.93	1311.57	NR	Nambucca
Macleay River	-30.8729	153.0259	37	27.39	31.64	11287.03	11318.67	NR	Kempsey
South West Rocks Creek	-30.8831	153.0379	38	0.83	0.94	3.67	4.61	NR	Kempsey
Saltwater Creek (Frederickton)	-30.8831	153.0428	39	0.28	0.28	11.11	11.40	NR	Kempsey
Korogoro Creek	-31.0536	153.0561	40	0.24	0.28	9.51	9.79	NR	Kempsey
Killick Creek	-31.1870	152.9784	41	0.28	0.29	7.93	8.22	NR	Kempsey
Goolawah Lagoon	-31.2093	152.9683	42	0.13	0.13	3.95	4.08	NR	Kempsey
Hastings River	-31.4259	152.9168	43	28.09	29.96	3658.57	3688.53	NR	Hastings, Kempsey
Cathie Creek	-31.5495	152.8598	44	7.86	13.75	105.50	119.25	NR	Hastings
Duchess Gully	-31.5871	152.8403	45	0.02	0.02	10.59	10.62	NR	Hastings
Camden Haven River	-31.6357	152.8375	46	31.39	32.16	588.99	621.15	NR	Greater Taree, Hastings
Manning River	-31.8767	152.6959	47	32.27	34.72	8124.50	8159.22	HCR⁵	Greater Taree
Khappinghat Creek	-32.0100	152.5656	48	1.03	1.19	90.73	91.92	HCR	Greater Taree
Black Head Lagoon	-32.0704	152.5449	49	0.01	0.01	1.99	2.00	HCR	Greater Taree
Wallis Lake	-32.1734	152.5109	50	92.80	98.70	1196.90	1295.61	HCR	Great Lakes, Greater Taree
Smiths Lake	-32.3954	152.5196	51	10.01	10.01	27.97	37.98	HCR	Great Lakes
Myall River	-32.6710	152.1457	52	112.53	115.20	818.74	933.93	HCR	Great lakes, Port Stephens
Karuah River	-32.6656	151.9719	53	14.12	17.88	1448.42	1466.30	HCR	Great Lakes, Port Stephens
Tilligerry Creek	-32.7280	152.0519	54	20.45	20.45	114.77	135.22	HCR	Port Stephens
Port Stephens	-32.7071	152.1953	55	123.75	134.38	296.77	431.14	HCR	Great Lakes, Port Stephens
Hunter River	-32.9143	151.8013	56	41.83	47.03	21366.95	21413.99	HCR	Dungog, Maitland, Newcastle, Port Stephens
Glenrock Lagoon	-32.9627	151.7383	57	0.05	0.05	7.37	7.42	HCR	Lake Macquarie, Newcastle
Lake Macquarie	-33.0855	151.6620	58	113.21	114.10	604.39	718.48	HCR	Lake Macquarie, Wyong
Middle Camp Creek	-33.1461	151.6368	59	0.01	0.01	5.01	5.03	HCR	Lake Macquarie
Moonee Beach Creek	-33.1666	151.6328	60	0.00	0.00	3.48	3.48	HCR	Wyong
Tuggerah Lake	-33.3447	151.5032	61	80.63	80.76	714.47	795.23	HCR	Wyong
Wamberal Lagoon	-33.4299	151.4489	62	0.52	0.52	5.82	6.34	HCR	Gosford
Terrigal Lagoon	-33.4427	151.4436	63	0.28	0.28	8.94	9.22	HCR	Gosford
Avoca Lake	-33.4642	151.4365	64	0.67	0.67	10.77	11.44	HCR	Gosford
Cockrone Lake	-33.4939	151.4288	65	0.33	0.33	6.85	7.18	HCR	Gosford

	Entrance	e location	Estuary area ¹ (km ²)		Catchment Total				
			Nth-	Saltmarsh	Saltmarsh	area ²	area ³		4
Estuary	Latitude (°S)	Longitude (°E)	sth no.	excluded	included	(km²)	(km²)	СМА	LGA(s) ⁴ covering estuary waterway
Brisbane Water	-33.5225	151.3341	66	27.22	28.34	152.55	180.89	HCR	Gosford
Hawkesbury River	-33.5644	151.3090	67	111.63	114.50	21624.06	21738.56	HN⁵	Baulkham Hills, Blacktown, Gosford, Hawkesbury, Hornsby, Ku-Ring-Gai, Penrith, Pittwater, Warringah
Pittwater	-33.5799	151.3169	68	18.36	18.39	50.77	69.16	HN	Pittwater
Broken Bay	-33.5625	151.3410	69	17.14	17.14	12.93	30.07	HN	Gosford
Narrabeen Lagoon	-33.7037	151.3081	70	2.31	2.32	52.41	54.73	SM⁵	Pittwater, Warringah
Dee Why Lagoon	-33.7469	151.3037	71	0.24	0.30	4.27	4.57	SM	Warringah
Curl Curl Lagoon	-33.7673	151.2992	72	0.07	0.07	4.65	4.72	SM	Warringah
Manly Lagoon	-33.7864	151.2891	73	0.10	0.10	17.25	17.34	SM	Manly, Warringah
Middle Harbour Creek	-33.8188	151.2572	74	6.11	6.11	76.98	83.09	SM	Ku-Ring-Gai, Manly, Mosman, North Sydney, Warringah, Willoughby
Lane Cove River	-33.8427	151.1778	75	2.98	2.98	95.36	98.33	SM	Hunters Hill, Ku-Ring-Gai, Lane Cove, Ryde, Willoughby
Parramatta River	-33.8449	151.1873	76	13.74	13.74	252.36	266.10	SM	Ashfield, Auburn, Canada Bay, Hunters Hill, Lane Cove, Leichhardt, Marrickville, Parramatta, Ryde, Strathfield
Port Jackson	-33.8283	151.2901	77	28.97	29.06	55.74	84.81	SM	Leichhardt, Mosman, North Sydney, Sydney, Woollahra
Cooks River	-33.9494	151.1688	78	1.20	1.20	110.57	111.77	SM	Botany Bay, Burwood, Canterbury, Marrickville, Rockdale, Sydney
Georges River	-33.9975	151.1554	79	25.75	26.59	930.91	957.50	SM	Bankstown, Canterbury, Fairfield, Hurstville, Kogarah, Liverpool, Rockdale Sutherland
Botany Bay	-34.0013	151.2337	80	38.79	39.55	54.87	94.42	SM	Botany Bay, Randwick, Sutherland
Port Hacking	-34.0725	151.1628	81	11.57	11.70	165.34	177.04	SM	Sutherland, Wollongong
Wattamolla Creek	-34.1379	151.1182	82	0.03	0.03	8.05	8.08	SM	Sutherland
Hargraves Creek	-34.2297	150.9914	83	0.00	0.00	2.02	2.02	SR⁵	Wollongong
Stanwell Creek	-34.2328	150.9878	84	0.01	0.01	7.69	7.69	SR	Wollongong
Flanagans Creek	-34.3156	150.9290	85	0.00	0.00	2.02	2.02	SR	Wollongong
Woodlands Creek	-34.3251	150.9244	86	0.00	0.00	2.00	2.01	SR	Wollongong
Slacky Creek	-34.3355	150.9251	87	0.00	0.00	3.08	3.08	SR	Wollongong
Bellambi Gully	-34.3652	150.9228	88	0.02	0.02	6.46	6.47	SR	Wollongong
Bellambi Lake	-34.3768	150.9223	89	0.03	0.03	1.31	1.34	SR	Wollongong
Towradgi Creek	-34.3833	150.9165	90	0.04	0.04	8.56	8.60	SR	Wollongong
Fairy Creek	-34.4099	150.9022	91	0.11	0.11	20.65	20.76	SR	Wollongong
Allans Creek	-34.4638	150.9003	92	1.16	1.17	50.46	51.63	SR	Wollongong
Port Kembla	-34.4648	150.9116	93	1.37	1.37	6.25	7.63	SR	Wollongong

	Entrance location		Estuary area ¹ (km ²)		ea ¹ (km²)	Catchment	Total		
Estuary	Latitude (ºS) Longitude (ºE)		Nth- sth no.	Saltmarsh excluded	Saltmarsh included	area ² (km²)	area ³ (km²)	СМА	LGA(s) ⁴ covering estuary waterway
Lake Illawarra	-34.5436	150.8750	94	35.53	35.83	238.43	274.27	SR	Shellharbour, Wollongong
Elliott Lake	-34.5606	150.8699	95	0.08	0.08	9.97	10.05	SR	Shellharbour
Minnamurra River	-34.6280	150.8611	96	1.53	1.86	117.33	119.19	SR	Kiama, Shellharbour
Spring Creek	-34.6642	150.8545	97	0.05	0.05	5.83	5.88	SR	Kiama
Munna Munnora Creek	-34.6924	150.8538	98	0.00	0.00	3.63	3.63	SR	Kiama
Werri Lagoon	-34.7287	150.8394	99	0.14	0.14	16.48	16.63	SR	Kiama
Crooked River	-34.7728	150.8157	100	0.26	0.28	31.99	32.27	SR	Kiama
Shoalhaven River	-34.8979	150.7662	101	29.84	31.89	7085.83	7117.72	SR	Shoalhaven
Wollumboola Lake	-34.9425	150.7772	102	6.33	6.33	34.13	40.46	SR	Shoalhaven
Currarong Creek	-35.0147	150.8215	103	0.03	0.03	12.33	12.37	SR	Shoalhaven
Cararma Creek	-35.0020	150.7776	104	2.39	2.39	6.80	9.19	SR	Shoalhaven
Wowly Gully	-34.9953	150.7287	105	0.16	0.16	6.02	6.19	SR	Shoalhaven
Callala Creek	-35.0067	150.7182	106	0.01	0.01	19.79	19.79	SR	Shoalhaven
Currambene Creek	-35.0375	150.6714	107	2.22	2.22	160.02	162.24	SR	Shoalhaven
Moona Moona Creek	-35.0499	150.6780	108	0.14	0.14	28.57	28.71	SR	Shoalhaven
Flat Rock Creek	-35.1241	150.7041	109	0.01	0.01	6.88	6.89	SR	Shoalhaven, Commonwealth
Captains Beach Lagoon	-35.1264	150.7115	110	0.05	0.05	3.14	3.19	SR	Commonwealth
Telegraph Creek	-35.1363	150.7254	111	0.01	0.01	4.28	4.29	SR	Commonwealth
Jervis Bay	-35.1039	150.7872	112	122.41	123.89	32.39	156.28	SR	Shoalhaven, Commonwealth
St Georges Basin	-35.1852	150.5938	113	40.76	40.91	315.75	356.66	SR	Shoalhaven, Commonwealth
Swan Lake	-35.2023	150.5598	114	4.68	4.68	26.38	31.06	SR	Shoalhaven
Berrara Creek	-35.2108	150.5484	115	0.26	0.26	35.04	35.30	SR	Shoalhaven
Nerrindillah Creek	-35.2276	150.5326	116	0.07	0.07	17.22	17.29	SR	Shoalhaven
Conjola Lake	-35.2687	150.5078	117	6.69	6.72	139.09	145.81	SR	Shoalhaven
Narrawallee Inlet	-35.3027	150.4740	118	0.86	1.04	80.92	81.96	SR	Shoalhaven
Mollymook Creek	-35.3356	150.4743	119	0.01	0.01	2.72	2.72	SR	Shoalhaven
Millards Creek	-35.3546	150.4757	120	0.00	0.00	4.50	4.51	SR	Shoalhaven
Ulladulla	-35.3556	150.4784	121	0.09	0.09	0.30	0.39	SR	Shoalhaven
Burrill Lake	-35.3950	150.4474	122	4.14	4.38	60.74	65.12	SR	Shoalhaven
Tabourie Lake	-35.4427	150.4106	123	1.45	1.49	46.14	47.63	SR	Shoalhaven
Termeil Lake	-35.4623	150.3944	124	0.57	0.57	14.05	14.62	SR	Shoalhaven
Meroo Lake	-35.4829	150.3915	125	1.37	1.37	19.27	20.64	SR	Shoalhaven
Willinga Lake	-35.5006	150.3914	126	0.31	0.31	13.59	13.90	SR	Shoalhaven

	Entrance location		Estuary area ¹ (km ²)		Catchment	Total			
Estuary	Latitude (°S) Longitude (°E)		Nth- sth no.	Saltmarsh excluded	Saltmarsh included	area ² (km²)	area ³ (km²)	СМА	LGA(s) ⁴ covering estuary waterway
Butlers Creek	-35.5522	150.3827	127	0.03	0.03	3.06	3.09	SR	Shoalhaven
Durras Lake	-35.6418	150.3054	128	3.60	3.77	58.38	62.15	SR	Eurobodalla, Shoalhaven
Durras Creek	-35.6576	150.2971	129	0.02	0.02	5.92	5.94	SR	Eurobodalla
Maloneys Creek	-35.7094	150.2437	130	0.03	0.03	8.17	8.20	SR	Eurobodalla
Cullendulla Creek	-35.7022	150.2095	131	1.12	1.29	15.16	16.45	SR	Eurobodalla
Clyde River	-35.7069	150.1818	132	17.03	17.55	1722.91	1740.46	SR	Eurobodalla, Shoalhaven
Batemans Bay	-35.7572	150.2500	133	34.48	34.48	28.00	62.49	SR	Eurobodalla
Saltwater Creek (Rosedale)	-35.8122	150.2259	134	0.00	0.00	2.82	2.82	SR	Eurobodalla
Tomaga River	-35.8374	150.1852	135	1.35	1.81	91.90	93.71	SR	Eurobodalla
Candlagan Creek	-35.8424	150.1802	136	0.13	0.20	24.12	24.31	SR	Eurobodalla
Bengello Creek	-35.8679	150.1632	137	0.01	0.01	16.32	16.33	SR	Eurobodalla
Moruya River	-35.9058	150.1518	138	5.35	6.14	1423.67	1429.82	SR	Eurobodalla
Congo Creek	-35.9536	150.1601	139	0.12	0.13	43.19	43.32	SR	Eurobodalla
Meringo Creek	-35.9785	150.1511	140	0.07	0.08	5.29	5.38	SR	Eurobodalla
Kellys Lake	-36.0065	150.1574	141	0.06	0.06	2.11	2.18	SR	Eurobodalla
Coila Lake	-36.0486	150.1416	142	6.77	7.12	47.64	54.76	SR	Eurobodalla
Tuross River	-36.0667	150.1344	143	14.70	15.50	1813.78	1829.28	SR	Eurobodalla
Lake Brunderee	-36.0935	150.1372	144	0.19	0.21	5.72	5.93	SR	Eurobodalla
Lake Tarourga	-36.1052	150.1356	145	0.33	0.33	5.99	6.31	SR	Eurobodalla
Lake Brou	-36.1280	150.1264	146	2.37	2.45	41.64	44.09	SR	Eurobodalla
Lake Mummuga	-36.1621	150.1266	147	1.63	1.65	25.76	27.41	SR	Eurobodalla
Kianga Lake	-36.1921	150.1330	148	0.17	0.17	7.50	7.67	SR	Eurobodalla
Wagonga Inlet	-36.2095	150.1348	149	6.91	6.94	93.28	100.22	SR	Eurobodalla
Little Lake (Narooma)	-36.2243	150.1411	150	0.10	0.10	2.17	2.27	SR	Eurobodalla
Bullengella Lake	-36.2421	150.1447	151	0.15	0.15	0.59	0.74	SR	Eurobodalla
Nangudga Lake	-36.2519	150.1444	152	0.60	0.74	9.47	10.21	SR	Eurobodalla
Corunna Lake	-36.2897	150.1312	153	2.08	2.13	29.74	31.87	SR	Eurobodalla
Tilba Tilba Lake	-36.3281	150.1156	154	1.02	1.17	17.09	18.27	SR	Eurobodalla
Little Lake (Wallaga)	-36.3396	150.1025	155	0.12	0.13	2.37	2.51	SR	Eurobodalla
Wallaga Lake	-36.3697	150.0799	156	9.14	9.31	263.84	273.14	SR	Bega Valley, Eurobodalla
Bermagui River	-36.4224	150.0731	157	1.99	2.16	83.46	85.62	SR	Bega Valley
Baragoot Lake	-36.4641	150.0668	158	0.47	0.55	12.61	13.16	SR	Bega Valley
Cuttagee Lake	-36.4880	150.0551	159	1.24	1.35	53.12	54.47	SR	Bega Valley
Murrah River	-36.5254	150.0581	160	0.68	0.84	195.76	196.60	SR	Bega Valley

Estuary	Entrance location			Estuary area ¹ (km ²)		Catchment	Total		
	Latitude (ºS)	Longitude (ºE)	Nth- sth no.	Saltmarsh excluded	Saltmarsh included	area ² (km²)	area ³ (km²)	СМА	LGA(s) ⁴ covering estuary waterway
Bunga Lagoon	-36.5402	150.0555	161	0.11	0.14	11.55	11.68	SR	Bega Valley
Wapengo Lagoon	-36.6285	150.0209	162	3.17	3.67	68.50	72.18	SR	Bega Valley
Middle Lagoon	-36.6505	150.0092	163	0.51	0.56	27.32	27.88	SR	Bega Valley
Nelson Lagoon	-36.6857	149.9940	164	1.19	1.35	26.98	28.33	SR	Bega Valley
Bega River	-36.7018	149.9830	165	3.31	3.84	1934.83	1938.67	SR	Bega Valley
Wallagoot Lake	-36.7900	149.9600	166	3.87	3.98	26.52	30.50	SR	Bega Valley
Bournda Lagoon	-36.8202	149.9389	167	0.08	0.08	34.50	34.58	SR	Bega Valley
Back Lagoon	-36.8833	149.9307	168	0.36	0.38	31.35	31.74	SR	Bega Valley
Merimbula Lake	-36.8957	149.9228	169	4.99	5.58	37.90	43.48	SR	Bega Valley
Pambula River	-36.9469	149.9170	170	4.36	4.72	296.46	301.18	SR	Bega Valley
Curalo Lagoon	-37.0469	149.9223	171	0.71	0.80	28.22	29.03	SR	Bega Valley
Shadrachs Creek	-37.0768	149.8787	172	0.01	0.01	13.23	13.24	SR	Bega Valley
Nullica River	-37.0911	149.8729	173	0.32	0.33	54.77	55.11	SR	Bega Valley
Boydtown Creek	-37.1029	149.8819	174	0.02	0.02	3.86	3.87	SR	Bega Valley
Towamba River	-37.1118	149.9132	175	1.91	2.04	1026.17	1028.21	SR	Bega Valley
Fisheries Creek	-37.1107	149.9289	176	0.05	0.09	6.45	6.54	SR	Bega Valley
Twofold Bay	-37.0775	149.9481	177	30.73	30.73	11.01	41.74	SR	Bega Valley
Saltwater Creek (Eden)	-37.1685	150.0030	178	0.06	0.06	17.19	17.24	SR	Bega Valley
Woodburn Creek	-37.1706	150.0052	179	0.05	0.05	13.51	13.56	SR	Bega Valley
Wonboyn River	-37.2497	149.9662	180	3.69	4.21	335.44	339.64	SR	Bega Valley
Merrica River	-37.2966	149.9519	181	0.12	0.12	60.54	60.66	SR	Bega Valley
Table Creek	-37.4063	149.9541	182	0.06	0.06	17.29	17.35	SR	Bega Valley
Nadgee River	-37.4381	149.9661	183	0.19	0.27	58.79	59.07	SR	Bega Valley
Nadgee Lake	-37.4688	149.9729	184	1.20	1.20	13.70	14.90	SR	Bega Valley
Total				1718.51	1791.23	127153.76	128944.99		

Estuaries draining to a port, bay or harbour have been numbered in a clockwise direction with the port, bay or harbour as the last number in the group.

Notes

1. Estuary water surface area is measured at approximately Mean High Water or about 0.6 m AHD. Two areas are given, the first is the water surface area including seagrass and mangrove which are usually submerged at Mean High Water. The second area includes saltmarsh which typically occurs between Mean High Water and Highest Astronomical Tide.

2. Catchment area excludes the estuary water surface and macrophyte areas.

3. Total area is the sum of estuary water surface, macrophyte and catchment areas.

4. LGA is local government area.

5. NR is Northern Rivers, HCR is Hunter-Central Rivers, HN is Hawkesbury-Nepean, SM is Sydney Metropolitan, SR is Southern Rivers.

4. Contextual data

Additional data are often required to interpret the condition of a natural resource and the pressures and threats acting on that asset that influence its condition. For example, systems for classifying estuaries into types with similar characteristics generally require data on a range of morphometric, hydrodynamic, catchment and hydrologic variables. Pressures also often have to be normalised to facilitate meaningful comparisons between estuary systems, for example, by catchment or estuary area.

The issue of contextual data was discussed in some detail in a report commissioned by the NLWRA (BTG 2004b). The report suggested that data were commonly required for interpretation, aggregation and/or mapping of an indicator. Contextual data were identified as either 'critical' or 'useful' in compilation or interpretation of an indicator:

- Data that are 'context-critical' were defined as those essential for interpreting 'protocol' or condition data and thus necessary to the proper understanding of the indicator
- Data that are 'context-useful' can add value to the process but are not essential.

Arundel & Mount (2007), in a background paper prepared for the NLWRA, focused on the need for contextual data identified in a number of consultant reports commissioned by the NLWRA and from pilot projects contracted to various state agencies. A conceptual model of three information domains was introduced covering:

- Asset Context: system typology, system trajectory, vulnerability (susceptibility) and pressures (drivers)
- Human Aims: ecosystem and human use vales and management objectives
- Asset Monitoring: resource condition.

Arundel & Mount (2007) argue that contextual information from the Asset Context and Human Aims information domains is essential to interpreting resource condition data. They suggest the credibility and value of resource condition assessments is reduced if information on mapping and inventories, asset typologies (classifications), pressures, vulnerabilities, ecosystem and human use values and management objectives is not available.

National indicator guidelines and protocols setting out recommended methods for collecting, collating and reporting information on condition and pressure indicators for national, state/territory and regional application are available at <u>www.lwa.gov.au/products/tags/2437</u> and <u>www.lwa.gov.au/products/tags/2438</u>. Sections on interpretation include factors influencing indicator values.

Likewise, the Australian and New Zealand Environment Conservation Council water quality guidelines (ANZECC 2000) refer to ecosystem-specific modifiers that can act to reduce the biological effects of individual stressors. As an example, chlorophyll a modifiers can include (depending on ecosystem type) hydraulic retention time (flows and volume of waterbody), mixing regimes, light regime, turbidity, temperature, suspended solids (nutrient sorption), grazing rates and type of substrate.

All the condition, pressure and stressor datasets potentially available for the SOC reports together with the contextual data that were considered for collation or collection to aid interpretation and whether they were 'context-critical' or 'context-useful' are shown in Table 2.

Table 2: Potential data types and indicators available for reporting

Dataset used

Dataset accessed but not used Dataset not accessed

Context ⁷ Data type Attribute Indicators Units Database ¹ Data Custodians No. 2 NRC **C.I.** ³ Crit. Usef. source **Condition data** Annual chlorophyll a statistics Biology Chlorophyll OEH, Ccls, Unis Some ✓ μg/l Local Sample Macroalgae distribution and m² Observation OEH \checkmark Macroalgae Local None abundance ✓ m² Seagrass extent and DPI DPI All Seagrass Aerials, satellite distribution ✓ Seagrass epiphyte coverage Local Observation OEH Epiphytes % cover Few ~ Mangrove extent and m² DPI Aerials, satellite DPI All Mangrove distribution Distance from entrance to ✓ km OEH Observation OEH All mangrove limits ✓ Saltmarsh Saltmarsh extent and m² DPI Aerials, satellite DPI All distribution Fish assemblages Species diversity, abundance, Estuarine fish DPI ✓ various Sample Many nursery function, trophic ecology integrity database Shore birds fledgling success OFH \checkmark Shore birds Observation South no. Local rate Estuary area infested with Aerials ✓ Invasive species m² DPI DPI Some Caulerpa Taxifolia Turbidity Annual turbidity statistics NTU Many \checkmark Water clarity Local Probes OEH, Ccls, Unis Annual secchi depth statistics \checkmark Secchi depth m Local Observation OEH, Ccls, Unis Some Pressure data ⁴ Census ABS, OEH All ~ Demographics Population Catchment density head/km² Local collection

district popⁿ

Data type	Attribute	Indicators	Units	Database ¹	Data	Custodians	No. ²	NRC C.I. ³	Context ⁷	
					source				Crit.	Usef.
Catchment	Land-use	Catchment land-use types	m²	Enterprise DataBase	Aerials	OEH	All		✓	
	Sewerage	Licensed discharge loads	kg/yr	ISEMS	Load based licensing records	OEH	All		~	
		Area with no reticulated sewerage	m²	Local	Town sewerage schemes	OEH	All			✓
	Soils	Soil erosion hazard	t/ha/yr	Local	Soil types, slope, models	OEH	All			~
		Acid sulfate soils drainage	km ² drained	Local	Flood drain maps, aerials	OEH	All			~
Fluvial System	River health	Riparian woody vegetation extent	% absent	Local	Satellite imagery	OEH	All			~
		River style geomorphic condition	class	Local	Survey	OEH	Some			✓
		Macroinvertebrate assemblages	O/E SIGNAL	Local	Survey	OEH	Some			✓
		Adjacent land-use	m width	Local	Aerials	OEH	All			✓
		Fish barriers	no.	DPI	Survey	DPI	All			~
	Extraction	Water extraction entitlements	m³/yr	LAS	Licence database	NSW Office of Water (NOW)	All		✓	
Foreshore use	Foreshore structures	Waterway structures	m	Crown Lands Division (CLD)	Licence records	CLD	All		✓	
	Moorings	Piles and marina licence area	m ²	CLD	Licence records	CLD	All			\checkmark
	Aquaculture	Areal aquaculture extent	m ²	DPI	Licence records	DPI	All		✓	
Waterway use	Entrance	Presence of training walls or breakwaters	presence	Estuaries	Aerials	OEH	All		~	
		Artificial entrance opening level	m AHD	Local	Council records	Ccls, OEH	All		~	
	Dredging	Dredging volumes for navigation etc	m³/yr	CLD	Licence records	CLD	All			~

Data type	Attribute	Indicators	Units	Database ¹	Data	Custodians	No. ²	NRC C.I. ³	Context ⁷	
					source				Crit.	Usef.
	Wild harvest fisheries	Annual commercial fish, prawn, mollusc catch	tonnes/yr	DPI	Licence records	DPI	All		✓	
		Estuary extent open to recreational or commercial fishing	% area	DPI	Licence records	DPI	All			~
	Fish barriers	Barriers to tidal flow	no.	DPI	Observation	DPI	All			\checkmark
Stressor data ⁵										
Catchment exports	Suspended solids	Total suspended solids (TSS) diffuse source inflow	t/year	Local	Catchment modelling	OEH	All		~	
		Point source TSS discharges	kg/yr	ISEMS	Licence records	OEH	All		✓	
	Nitrogen	Total nitrogen (TN) diffuse source inflow	t/year	Local	Catchment modelling	OEH	All		✓	
		Point source TN discharges	kg/yr	ISEMS	Licence records	OEH	All		✓	
	Phosphorus	Total phosphorus (TP) diffuse source inflow	t/year	Local	Catchment modelling	OEH	All		✓	
		Point source TP discharges	kg/yr	ISEMS	Licence records	OEH	All		✓	
Contextual data ⁶										
Geography	Identifier	Estuary name	name	Estuaries	Geographical Names Board	OEH	All		✓	
		Estuary number (latitude)	6 digit ID	Local	Estuary polygon	OEH	All		✓	
	Location	Latitude, longitude	°S, ⁰E	Estuaries	Estuary polygon	OEH	All		✓	
	Boundary	CMA, LGA, IMCRA	name	EDB	CMA polygon	OEH	All		\checkmark	
Geomorphology	Classification	Geomorphic group, type, maturity	class	Local	Roy et al. 2001	OEH	Most		~	
	Area	Estuary surface area	m²	Estuaries	Aerials and bathymetry	OEH	All		✓	
	Depth	Mean estuary depth	m	Local	Bathymetry	OEH	Some		✓	
	Volume	Estuary volume	m ³	Local	Bathymetry	OEH	Some		✓	
	Perimeter	Estuary perimeter	km	Local	Aerials and bathymetry	OEH	All		~	

Data type	Attribute	Indicators	Units	Database ¹	Data	Custodians	No. ²	NRC Cont	Conte	xt ⁷
					source			C.I. ³	Crit.	Usef.
	Length	Distance from entrance to tidal limits	km	EDB	Survey	OEH	All		✓	
Sediments	Unvegetated	Habitat type	m²	OzCoasts	Aerials	Geoscience Aust.	Most			~
	Vegetated	Intertidal area (flats+saltmarsh+mangrove)	m²	OzCoasts	Aerials	Geoscience Aust.	Most			~
Inlet channel	Inlet morphology	Inlet channel dimensions	m	Local	Aerials	OEH	Few			✓
	Entrance	Entrance opening regime	days	Local	Opening records and aerials	Ccls, OEH	Some		✓	
		Mean natural berm height	m AHD	Local	Survey	Ccls, OEH	Few			✓
		Entrance dimensions	m	Local	Aerials and bathymetry	OEH	Few			~
Oceanography	Ocean tides	Water level statistics	m AHD	MHL	Water level recorders	OEH	All		~	
	Waves	Mean wave height, period	m	OzCoasts	Wave stations	Geoscience Aust.	Most			~
	Temperature	Sea surface temperature	°C	MHL	Satellite imagery	Various	All			✓
	Sediment transport	Mean gross longshore transport	m³/yr	Local	Wave climate, offshore bathymetry, particle size	OEH, Royal Australian Navy	Few			v
Hydrodynamics	Estuary tides	Water level statistics	m AHD	MHL	Water level recorders	OEH	Some		~	
		Tidal planes	m AHD	MHL	Water level recorders	OEH	Some		✓	
		Tidal prism	m ³	MHL	Flow gauging	OEH	Many		\checkmark	
	Flushing	Entrance exchange efficiency	%	Reports	Salinity records, models	OEH	Few		~	
		Tidal flushing	days	Local	Derived	OEH	Most		✓	
		Freshwater flushing	days	Local	Derived	OEH	All		~	
Water quality	Salinity	Annual salinity statistics	ppt	MHL	Probes	OEH, Ccls, Unis	Some			\checkmark
(physical)	Temperature	Annual temperature statistics	∘⊂	MHL	Probes	OEH, Ccls, Unis	Some			\checkmark
	Dissolved oxygen	Annual dissolved oxygen statistics	% sat.	MHL	Sample	OEH, Ccls, Unis	Some			~

Data type	Attribute	Indicators	Units	Database ¹	Data	Custodians	No. ²	NRC C.I. ³	Context ⁷	
					source				Crit.	Usef.
Water quality	Nitrogen	Annual TN statistics	μg/l	Local	Sample	OEH, Ccls, Unis	Some			✓
(nutrients)	Phosphorus	Annual TP statistics	μg/l	Local	Sample	OEH, Ccls, Unis	Some			~
Catchment	Area	Catchment surface area	m ²	LPI	Aerials	LPI	All		✓	
	Topography	Elevation, slope statistics	m AHD	Local	DEM	OEH	All		✓	
	Geology	Regolith stability	class	SALIS	Soil type polygons	OEH	All			~
	Soils	Landscape, type	class	SALIS	Survey	OEH	All			✓
Climate	Air temperature	Annual air temperature statistics	°C	Local	Temp. stations	ВоМ	All			~
Hydrology	Rainfall	Catchment rainfall patterns	mm/yr	Local	Rainfall stations	BoM, SILO	All		✓	
	Runoff	Catchment runoff statistics	m³/yr	Local	Runoff model	OEH	All		✓	
	Evaporation	Pan evaporation rate, pan factor	mm/yr	Local	Evaporation pan	BoM, SILO	All		~	
	Dilution	Freshwater dilution of total estuary volume	ratio	Local	Bathymetry and runoff model	OEH	All		~	

1. Local database means not corporate database system. ISEMS = Integrated Statutory Environmental Management System. LAS = Licencing Administration System.

MHL = Manly Hydraulics Laboratory. SALIS = Soil And Land Information System.

2. No. is the number of estuaries for which data are available ranked as few, some, many, most, all (184 in total).

3. NRC C.I. is Natural Resources Commission resource Condition Indicator.

4. Pressures refer to human activities influencing the environment.

5. Stressors refer to physical, chemical or biological components of the environment that transfer the impact of a pressure onto resource condition.

6. Contextual data refers to physical or environmental data necessary for interpretation of resource condition data.

7. 'Context critical' data are essential for interpretation of condition; 'Context useful' data add value to interpretation but are not essential.

Shown in Table 3 are contextual data identified by the estuaries theme team as the minimum necessary for interpreting estuary condition and pressure indicators used in the SOC reports. The rationale by the estuaries theme team for their collection is listed under 'Intended uses' together with how any gaps in existing datasets were filled.

Attribute Intended uses		Data gap-filling
Morphometry		
Tidal limits	Establish upstream extent of area	
Estuary surface area	Normalise pressures Potential scaling factor for catchment loads	Map from LPI 1:25,000 topographic series
Estuary volume	Input for dilution and flushing	Establish correlations with other physical factors eg area
Estuary depth	Potential scaling factor for catchment loads	Establish correlations with other physical factors eg area
Estuary perimeter	Normalise pressures	Map from LPI 1:25,000 topographic series
Catchment		
Area	Normalise pressures Input to catchment hydrology	
Topography	Input to catchment hydrology	
Hydrology		
Rainfall	Catchment hydrology model Direct input onto estuary surface	
Runoff	Input to estuary for flushing	Regionalise calibrated model parameters
Evaporation	Catchment hydrology model Direct loss from estuary surface	
Hydrodynamics		
Tidal prism	Input to tidal flushing	Use tidal range and estuary area
Tidal range	Input to tidal flushing	Use default values for each classification type
Tidal flushing	Classification variable Potential scaling factor for catchment loads	Use default tidal range, estuary area and exchange efficiency values
Dilution	Classification variable Potential scaling factor for	

 Table 3:
 Contextual data required for interpretation of indicators

Attribute	Intended uses	Data gap-filling
	catchment loads	
Classification		
Entrance condition	Needed for response classification	Local government records
	Opening level/training as pressure	
Geomorphology	Correlation variable for gap- filling data	Aerial photograph interpretation
Chlorophyll response	Stratify sampling design Basis for reference conditions	Utilise factors available for all estuaries

In the following sections, the data sources, analysis and interpretation for each contextual dataset listed in Table 3 are described.

4.1 Morphometry

4.1.1 Estuary volume

Hydrographic surveys of the bathymetry of NSW estuaries have been conducted by the NSW Government over the last 100 years, with many of those in the last 30 years. Surveys are available for 80 estuaries, mostly in digital format since 1992 but with some of the older surveys still in paper form. The paper surveys are being converted to digital format as resources permit. A full listing of hydrographic surveys is included in Appendix 2.

Of the 80 surveys, 49 were in a form suitable for gridding into a Digital Elevation Model (DEM) with a horizontal resolution of generally 12.5 m. In addition, a single DEM with a spatial resolution of 25 m is available to describe topography over all NSW coastal catchments. The bathymetric and topographic models were merged so that a continuous surface could be created up to at least 1.6 m Australian Height Datum (AHD) which is above Mean High Water Spring tide for NSW estuaries. The procedure used for generating merged DEMs is described in DECC (2009a).

Gridded bathymetry was prepared for the following 49 estuaries: Cudgen Creek, Clarence River, Wooli Wooli River, Corindi River, Moonee Creek, Deep Creek, Macleay River, Saltwater Creek (Frederickton), Killick Creek, Hastings River, Cathie Creek, Wallis Lake, Smiths Lake, Myall River, Lake Macquarie, Tuggerah Lake, Wamberal Lagoon, Avoca Lake, Brisbane Water, Narrabeen Lagoon, Dee Why Lagoon, Lake Illawarra, Werri Lagoon, Crooked River, Wollumboola Lake, Jervis Bay, St Georges Basin, Swan Lake, Conjola Lake, Narrawallee Inlet, Burrill Lake, Tabourie Lake, Willinga Lake, Durras Lake, Clyde River, Tomaga River, Moruya River, Coila Lake, Tuross River, Kianga Lake, Wagonga Inlet, Nangudga Lake, Wallaga Lake, Bega River, Back Lagoon, Merimbula Lake, Pambula River, Curalo Lagoon and Wonboyn River.

The DEMs for the 49 estuaries were used to calculate the underwater horizontal area at vertical intervals of between 0.1 and 0.2 m, starting at the deepest point in each estuary (hypsometry). The hypsometry was then converted to total water volumes below elevations of 0.0, 0.2, 0.4 and 0.6 m AHD.

In addition, the NSW Maritime Authority has calculated water volumes for Parramatta River, Lane Cove River, Middle Harbour Creek and Port Jackson at Mean High Water Mark (MHWM – defined as 1.48 m above zero level on the Fort Denison Tide Gauge) and at zero Fort Denison Tide Gauge, and the area, perimeter (including island foreshore) and depth all at MHWM.

An example of the bathymetric and topographic contours and the hypsometry calculated for Smiths Lake is shown in Figure 3.

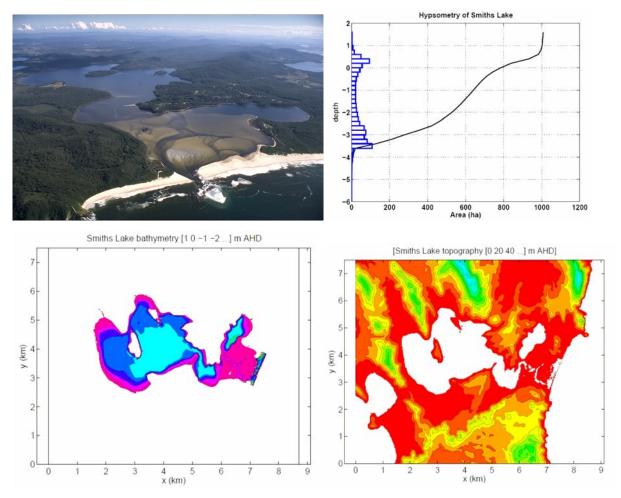


Figure 3: Example hypsometry for Smiths Lake

As only 53 out of a total of 184 estuaries have hydrosurveys sufficiently detailed to calculate volumes, exploratory analysis was conducted to determine if other physical variables, such as estuary and catchment areas, could be used to empirically predict volumes for the remaining 131 estuaries without hydrosurveys. The best correlation was found between estuary surface area and estuary volume as shown in Figure 4 (line of best fit only shown for 0.0 m AHD).

Figure 4: Comparison of estuary surface area and volume

While the correlation explains much of the variability, the logarithmic scales mask considerable scatter. Further analysis of the area-volume relationships found grouping estuaries by geomorphic type in accordance with the scheme of Roy et al. (2001) improved the correlations. This was particularly important for the large number of estuaries with relatively small surface areas. Four groups of different estuary geomorphic types were found to adequately account for variability as shown in Figure 5.

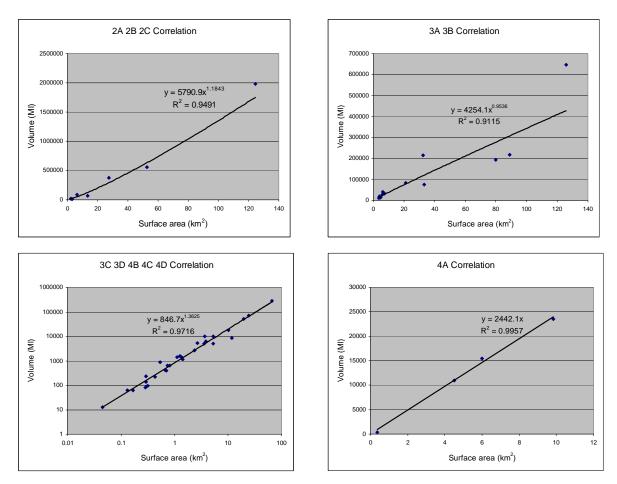


Figure 5: Correlations between estuary volume and surface area for different geomorphic types

Note: 2 = tide-dominated estuaries, 3 = wave-dominated estuaries, 4 = intermittent estuaries A = youthful, B = intermediate, C = semi mature, D = mature

All correlations were based on areas at 0.6 m AHD for a number of reasons, including the following:

- LPI mapping of the boundaries of estuary water surfaces is generally done with aerial photographs selected with maximum inundation
- MHW Spring tides are generally around 0.6 m AHD or higher
- Coastal lagoons generally experience closure around 0.6 m AHD so this is likely to be a minimum level at which aerial photography is flown.

A comparison was made between the estuary surface areas generated using the merged DEM methods described in DECC (2009a) and those generated from the MER program using aerial photograph interpretation (API) all at 0.6 m AHD. The results shown in Figure 6 for estuaries less than 20 km² in area (38 estuaries or 78 per cent of 49 total) indicate that the merged DEM areas are significantly below the MER program API areas. This is to be expected for reasons including the following:

• The gathering of bathymetric data is limited to depths generally navigable by boat although some more recent surveys are being extended to top of bank. Large areas of low-lying semisubmerged banks may not have been surveyed and the merged DEMs may not have adequately captured these potentially large expanses

- Areas of mangrove and saltmarsh are generally not captured by hydrosurveys with similar implications to the above
- There could be tributaries of estuaries that for various reasons (eg limited access) may not have been included in the hydrosurvey.

Also included in Figure 6 are the MER program API areas excluding saltmarsh areas which extend down to Mean High Water level of about 0.6 m AHD. These are a closer fit to the merged DEM areas and therefore have been used to generate volumes for the 131 estuaries without hydrosurveys based on the regression relationships shown in Figure 5. Checking of the actual volumes of the 53 estuaries having hydrosurveys with the predicted volumes using the total estuary area including mangrove and saltmarsh showed a median overestimate in predicted volume of 23 per cent (interquartile range -5 to +70 per cent). Reducing the total area to exclude saltmarsh reduced the median in predicted volume to an underestimate of five per cent (inter-quartile range -17 to +51 per cent). The final volumes adopted were the actual volume where available; otherwise, the volume predicted using the estuary without saltmarsh area.

As the merged DEM areas are smaller than the MER program API-derived areas, the total volumes for the former are likely to be less than the actual amount. The extent to which this occurs cannot be determined without comparison between the merged DEMs and more accurate DEMs generated using topographic data at a finer resolution, eg Light Detection And Ranging (LiDAR) data which uses laser pulses to generate large amounts of information on the physical layout of terrain and landscape features.

Additional work is required to refine the volume estimates for the next round of SOC reports. A report has been prepared for OEH exploring options for storing bathymetric data and generating DEMs and other useful tools to better integrate bathymetric, topographic and LiDAR data.

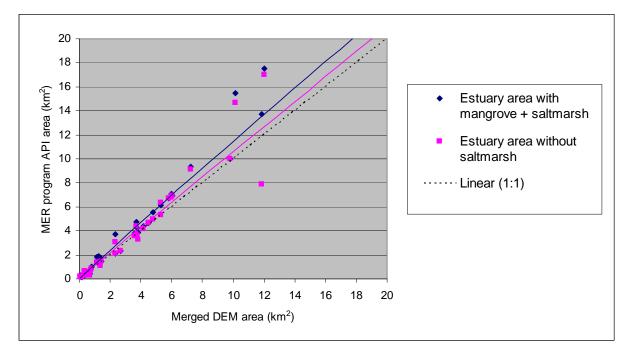


Figure 6: Comparison of estuary areas from merged DEMs and MER program API

4.1.2 Estuary depth

Estuary depth has been estimated by dividing the total volume at 0.6 m AHD by the total surface area of the estuary including seagrass and mangrove but excluding saltmarsh.

4.1.3 Estuary perimeter

The combined LPI estuary and DPI macrophyte polygon layer was used to generate estuary perimeters. However, the fine scale resolution of the macrophyte layer resulted in unrealistically large estimates of perimeter. The LPI estuary layer is relatively smooth in its delineation of the water boundary and was used to generate the final perimeters. This method is sufficient for the purposes of the MER program as the primary use of perimeter is for comparison of the proportion of foreshores disturbed by human activity such as foreshore structures or riparian vegetation removal. It was also used for exploratory analysis of potential scaling factors for nutrient loading.

A summary of morphometric parameters for NSW estuaries is shown in Appendix 3.

4.2 Catchment area

4.2.1 Data sources

Land-use mapping for Eastern and Central NSW commenced in April 2001 and was completed in June 2007 by OEH. Aerial photography and satellite imagery was acquired between 1999 and 2006 depending on availability and the timing of mapping. While the photography and imagery were acquired over a seven-year period, the scale of land-use change is unlikely to significantly affect the accuracy of the analysis and modelling relying on this information.

Land-use is classified using three separate schemes:

- Australian Land-Use and Management (ALUM)
- NSW Standard Classification for Attributes of Land (SCALD)
- NSW Land-Use Mapping Program (LUMAP).

The ALUM classification is the coarsest of the three schemes with 159 land-use classes as shown in Appendix 4. The NSW LUMAP has the finest resolution of land-use totalling 481 separate classes. Land-use classes with similar runoff characteristics were allocated to one of 21 hydrological groups for the purposes of 2CSalt hydrological modelling as shown in Appendix 5. This was followed by further aggregation into nine classes of forest, cleared land, urban, crops, grazing, irrigated pasture, dry forb, irrigated forb and other for the purposes of nutrient and sediment export modelling as shown in Appendix 6.

The estuary surface GIS layer which included water, seagrass, mangrove and saltmarsh was clipped to the detailed land-use layer and summary statistics derived for the nine aggregated land-use classes. Data for all nine land-uses excluding 'forest' and 'other' were summed to provide an estimate of the total area of disturbed land within each estuary catchment as shown in Appendix 7.

4.2.2 Limitations of the land-use mapping

A comparison was made between the estuary surface including macrophytes mapped under this MER program and the land-use mapping layer. A map of Cudgera Creek land-use shown in Figure 7 illustrates a number of limitations. These include the following:

- A significant mismatch exists between the lateral boundaries of the estuary under the two mapping programs
- The land-use mapping program has allocated the ALUM Code 6.3.0 River to the estuary in preference to ALUM Code 6.6.0 Estuary/coastal waters
- The southern tributary has mapped as ALUM Code 6.3.0 River in contrast to the northern tributary which has mapped as ALUM Code 1.3.3 Residual native cover
- ALUM Code 1.3.3 Residual native cover has mapped variously as estuary, seagrass, mangrove and saltmarsh
- The ALUM Code 6.6.0 has mapped to areas of mangroves at the northern end but not at the southern end.

A map of Tomaga River land-use is shown in Figure 8 illustrating the various codes under the ALUM, SCALD and LUMAP classification schemes that make up the ALUM Major Category Code 6 Water. These are the main codes that cover the MER program estuary mapping boundaries. It can be seen that:

- the MER program estuary area is covered by up to six SCALD and LUMAP codes describing various estuarine features
- there are significant differences in the area of mangrove mapped between the two programs
- the 6.5.0/k0o/56 (ALUM, SCALD, LUMAP codes respectively) Coastal marsh/estuarine swamp covers variously saltmarsh, mangrove or sometimes neither
- the 6.6.0/f5o/55 Mudflat covers variously saltmarsh, mangrove or sometimes neither
- one patch of seagrass has mapped as 6.1.0/f5a/105 Coastal lake.

The MER program estuary and macrophyte areas are included in either the 'forest' (as conservation area such as a national park) or 'other' (as river, wetland or sand) hydrological land-use classes. The exception is ports, bays and harbours which were not generally included under the NSW LUMAP.

These two figures demonstrate differences in interpretation and accuracy between the two mapping methods. The differences are minor when grouping land-uses into broad categories for hydrological modelling and sediment and nutrient export calculations.

Also shown in Appendix 7 is a comparison between the areas defined in the MER program and those extracted into the nine land-use classes for the hydrological models. There are differences of 4% or more for 30 estuaries (10% or more for 18 of those 30 estuaries), the reasons for which have been identified as:

- incorrect land-use extraction for 14 estuaries
- estuary excluded from the land-use map for nine estuaries
- land-use map was clipped along the coastline for one estuary
- incomplete land-use map for six estuaries, all of which are in the Sydney Metropolitan Area where land-use mapping is incomplete and coarse scale land-use data from the National Land and Water Resources Audit was substituted.

As these data were used for calculating the percentage of disturbed land in each estuary catchment, the cleared land pressure indicator (see Section 9.6) for these 30 estuaries may change in the next round of SOC reporting. The extent of the change will be variable with most scores either not changing at all or moving by one scoring class while a small number may change significantly. The effect on the overall pressure indices will be small as the cleared land indicator is one of eight used in the assessment. Separate land-use extractions were performed in subsequent processes for modelling catchment rainfall runoff (see Section 4.3) and calculating sediment and nutrient export loads (see Section 9.9 and Section 9.10) and are unaffected.

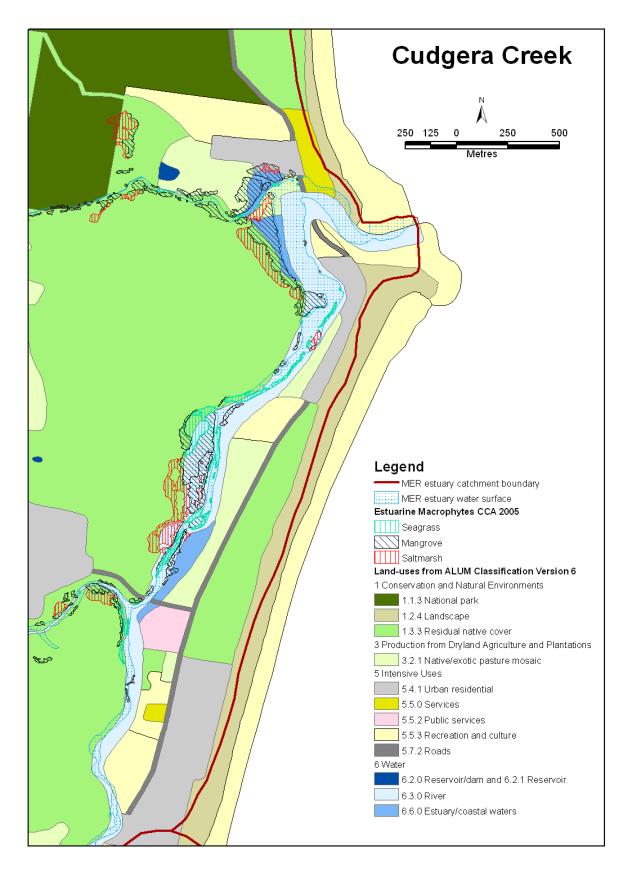
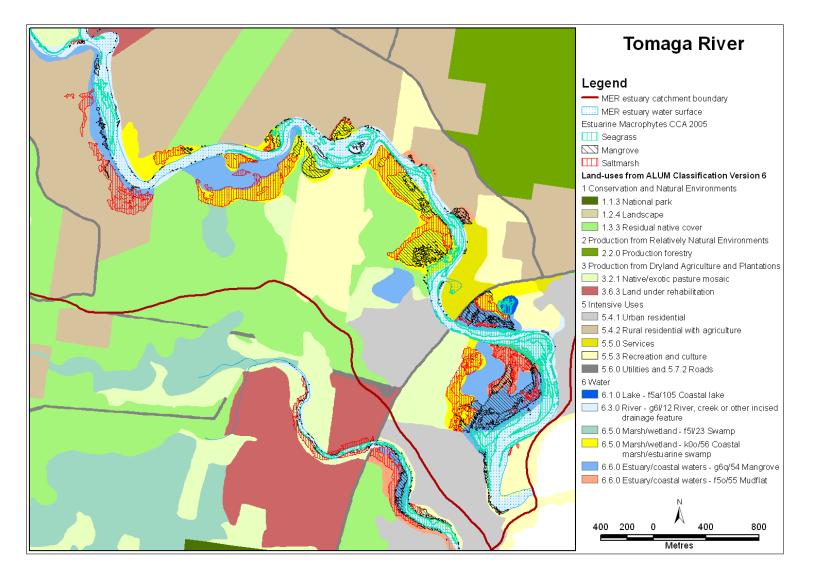



Figure 7: Land-use map for Cudgera Creek

4.3 Hydrology

Hydrological modelling has been undertaken as part of the NSW Government's WSP process for only a very small number of catchments on the coastline. The Integrated Quantity and Quality Model is the primary means of simulating freshwater streamflow on a daily basis which is required for setting water sharing rules. For the purposes of the Estuaries MER program, total annual inflows were required to assess the effect of freshwater flows on dilution capacity and flushing times, and to estimate the annual export of sediments and nutrients from catchments into the estuary.

The coastal stream gauging network consists of 98 gauging stations with more than five years of data, located across 34 catchments providing a limited dataset for model calibration. Of these 98 stations, 78 had data useful for calibration across 28 estuary catchments. These 28 estuary catchments were Tweed River, Brunswick River, Richmond River, Corindi River, Bellinger River, Nambucca River, Macleay River, Hastings River, Camden Haven River, Manning River, Wallis Lake, Myall River, Karuah River, Lake Illawarra, Minnamurra River, Shoalhaven River, Currambene Creek, St Georges Basin, Butlers Creek, Clyde River, Tuross River, Wallaga Lake, Bermagui River, Murrah River, Bega River, Back Lagoon, Towamba River and Merrica River.

As hydrology was required for all 184 estuary catchments, any model needed to be capable of providing regionalised parameters for use in catchments without a flow gauge. The model selected that best met the requirements and limitations was 2CSalt.

The 2CSalt model was designed to allow state agencies within Australia to model upland unregulated catchments in a consistent manner across large areas (Littleboy et al. 2009). It has been developed and extensively tested and applied with the Murray–Darling Basin but can be applied more widely. The model quantifies surface and sub-surface contributions to salt and water export and predicts the impacts of land-use change on those exports at a catchment scale. It was designed to make use of existing regional datasets such as Groundwater Flow Systems (GFSs) and topography. Outputs include monthly predictions of water and salt movement across several water pathways with a hillslope and alluvial groundwater store, leading to water and salt contributions to streams.

4.3.1 Input data

A number of datasets were required as input for the modelling:

- Land-use mapping was simplified into the 21 hydrological classes that better reflect catchment rainfall runoff response
- DEM was based on 25 m resolution but resampled to 100 m
- Climate zones reflected total rainfall and rainfall seasonality. For each of the 528 climate zones
 of NSW, daily weather data from 1956–2006 were extracted from the Queensland Department
 of Natural Resources SILO dataset. SILO is an online database developed by the Bureau of
 Meteorology in 1997, with about 120 years of continuous daily weather records for Australia
 including rainfall, temperature (minimum and maximum), radiation, evaporation and vapour
 pressure. The mean annual rainfall is shown in Figure 9
- Detailed soil mapping was used where available and infilled with coarser land systems mapping for other areas. After attributing each soil unit with a Greater Soil Group, soil hydraulic

properties (water content at air dry, wilting point, field capacity and saturation, and hydraulic conductivity) were obtained

• As there is no detailed GFS mapping for coastal NSW, a simple GFS map was generated from 1:250,000 geology mapping. Attributes of aquifer depth, specific yield and hydraulic conductivity were added using simple lookup tables based on geological type.

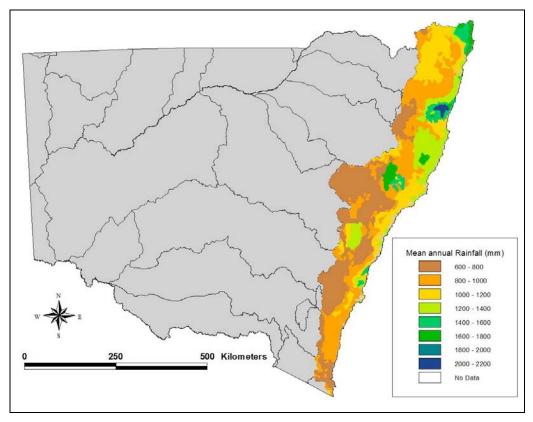


Figure 9: Mean annual rainfall in NSW coastal catchments

4.3.2 Model calibration

Rather than calibrating a model with historical streamflow data, then regionalising parameters to ungauged catchments, 2CSalt can be run with a standard set of parameters and still provide acceptable predictions of streamflow and salt loads. Flows estimated from the model can be scaled based on regionalising scale factors. The procedure was as follows:

- For each of the 78 gauging stations, the ratio between the measured and uncalibrated modelled annual flows was calculated on an average annual basis
- The 78 ratios were grouped according to the river basin the gauging station was located in. These 14 river basins were Tweed, Brunswick, Richmond, Bellinger, Macleay, Hastings, Manning, Karuah, Shoalhaven, Clyde, Tuross, Bega and Towamba River basins and the Wollongong Coast Basin
- For each river basin, the mean ratio was calculated and applied as a scaling factor to linearly adjust estimated flows.

Estimated and measured average annual streamflows for the 78 gauging stations are shown in Figure 10 for the uncalibrated model in ML (a) and mm (c) and for the uncalibrated model after application of the regionalised scaling factors in ML (b) and mm (d). Results have been given in mm

as well as ML to remove the effects of catchment area when assessing model performance. After application of the linear scaling factors, 2CSalt explained 98 per cent and 78 per cent of the variation in average annual flows in ML and mm respectively. Model performance was poorer for the flow in mm, probably due to the wide range in catchment area (0.3 km² to 22,100 km²).

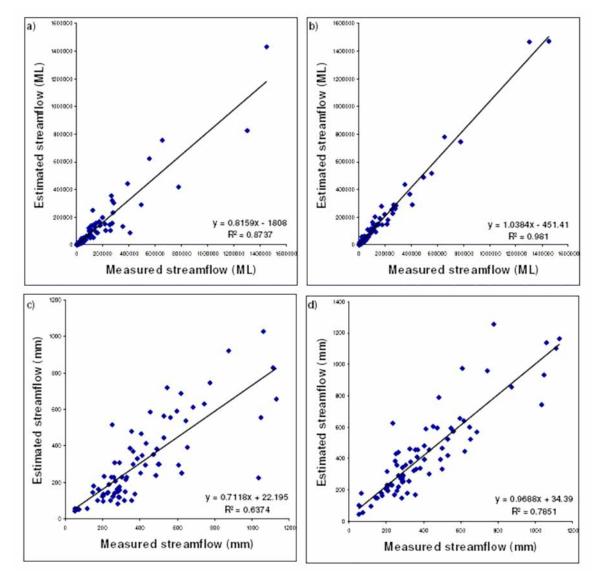
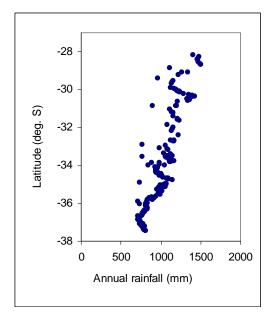


Figure 10: Comparison between mean annual measured and modelled streamflow

Notes: ML = megalitres of annual streamflow

mm = millimetres depth of annual streamflow normalised by catchment area

a) and c) = uncalibrated model


b) and d) = uncalibrated model after application of regionalised scaling factors

4.3.3 Model results

The models were run for two land-use scenarios: current land-use and a pre-European settlement undisturbed catchment. Modelling provided estimates of surface flow (high flows), base flow (low flows) and total streamflow in a monthly time series (see Appendix 8). Increases in surface flows reached 76 per cent, base flows 913 per cent and total streamflows 142 per cent with averages of

14 per cent, 97 per cent and 27 per cent respectively. More than 50 per cent increases in surface, base and total flows occurred in 16 per cent, 53 per cent and six per cent of catchments respectively.

Runoff coefficients representing the ratio of annual runoff to rainfall for pre-European undisturbed catchment conditions and current land-use are shown in Figure 11 together with annual rainfall. As would be expected the relative proportion of rainfall appearing as runoff increases as the rainfall increases and soil moisture stores become saturated. Clearing of land within catchments serves to further increase the relative proportion of rainfall appearing as runoff.

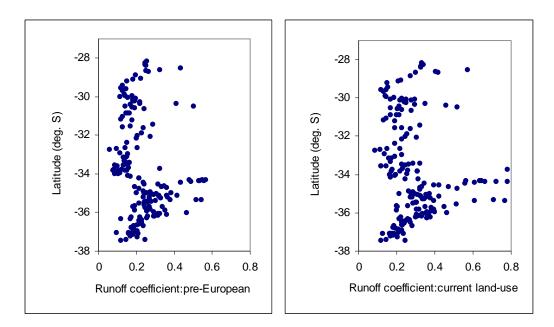


Figure 11: Rainfall and pre-European/current land-use runoff coefficients

4.3.4 Limitations and recommendations

Further work is required to assess the validity of the regionalisation procedure by the systematic removal of a subset of catchments from the process. The impacts of catchment area on the results should be further examined.

A scaling procedure using daily rainfall records could be used to break down the monthly flow estimates into a daily time series and generate flow duration curves. These could be used in:

- finer scale assessment of the influence of rainfall runoff on chlorophyll a and turbidity
- development of additional metrics of hydrological stress particularly under low flows
- generating daily water balance models to assess changes to inundation regimes and peripheral vegetation in intermittently open estuaries subjected to entrance manipulation.

The table in Appendix 8 showing catchment runoff also includes the catchment area from the DEM generated for use in the modelling process. The areas derived for the purposes of hydrological modelling were in a GIS raster format, as required by the 2CSalt model, compared with the GIS polygon format used for generating MER program areas. A comparison was made between the DEM areas and the MER program catchment areas. Some of the DEM areas were found to be larger primarily due to either the DEM capturing large areas of estuary foreshore down to 0.0 m AHD or else the DEM capturing the estuary surface area particularly in shallow systems where the water surface is elevated. The effect on total flows from each catchment is minimal.

4.4 Hydrodynamics

Algal blooms are dependent on a complicated interplay between physical, chemical and biotic controls on bloom dynamics (Pinckey et al. 2001). Factors influencing nutrient movement include tidal range and asymmetry, ocean currents, upwelling, wind, density stratification and gradients (salinity/temperature), advection, catchment hydrology, biological community composition, microbial associations, grazing, rate and magnitude of biotic cycling, water residence time (McKee et al. 2000; Pinckey et al. 2001).

A number of different terms are applied to the transport and removal of materials such as nutrients from estuaries including residence time, flushing time and turnover time (US EPA 2001). More generally these are referred to as 'water residence time'.

'Freshwater residence time' is defined as the average amount of time freshwater resides in the estuary before exiting the entrance. It can be calculated by the freshwater fraction method which gives the time required for the volume of freshwater in an estuary to be replaced by the input rate of freshwater. It requires knowledge of inflows, estuary volumes and average salinity. This is generally the most useful for analysis of eutrophication in estuaries because most nutrients are introduced with freshwater. It has been criticised for an apparent focus on freshwater at the expense of not including flushing by seawater. However tidal flushing is accounted for implicitly because the average estuarine salinity used in the calculation reflects all processes bringing seawater into the estuary. The method can only be applied to systems with significant freshwater input. Numerical models can be developed to segment complex systems and improve the spatial resolution of residence time estimates.

Where salinity data are not readily available and tidal flow is the dominant flushing mechanism, 'estuary flushing time' can be calculated using the classical tidal prism method (Dyer 1973). This requires knowledge of estuary volume and tidal prism and assumes that the system is well mixed. A modification to this method is to include an exchange efficiency coefficient applied to the tidal prism. This can be used to account for the incomplete mixing that occurs inside the estuary with each new flood tide and the potential for some of the ebb tide flow to not disperse away from the entrance if offshore wave and current energy is low. Any moderate freshwater flows will be accounted for in the tidal prism but the exchange efficiency may be lower. Guo & Lordi (2000) found the third method gave flushing times lying between times from the freshwater fraction and tidal prism methods.

'Estuary residence time' can be calculated using numerical models to determine either:

- the mean amount of time for a particle of water at any location within an estuary to leave the estuary
- the time necessary to reduce an initial pollutant concentration to 1/e (where e ~ 2.718).

For the MER program, estuary flushing time was assessed using the tidal prism method modified with an exchange efficiency coefficient. Salinity data were available for 33 of the 80 estuaries that are permanently open or are intermittent and have a tidal gauging. There was insufficient salinity data for all 80 estuaries to use the freshwater fraction method. Numerical models of estuary residence time were not feasible considering the large number of estuaries that could have potentially been modelled. The key dataset required was therefore tidal prism from which tidal flushing could be derived.

4.4.1 Tidal prism

Tidal gaugings have been conducted by OEH and former constituent agencies on 51 estuaries within NSW dating back to 1977. A compilation of all tidal gaugings was prepared by Manly Hydraulics Laboratory (MHL 2004) and was accessed for data on:

- gauging line location closest to the estuary entrance
- ebb tide tidal prism and range at gauging line
- flood tide tidal prism and range at gauging line
- Fort Denison ebb and flood tidal range.

Tidal gaugings are generally undertaken near the spring tide cycle to capture as much inundation of peripheral tidal flats as possible. For smaller systems subject to closure, gauging tends to occur during scoured rather than shoaled entrance conditions so that, again, tidal flows are maximised. Reasons for historically favouring this particular combination of oceanographic conditions relate primarily to gathering data useful for calibrating numerical models.

For the MER program, flushing times are of interest for developing classification systems and for exploratory analysis of scaling factors to be applied to nutrient loading. Field sampling of water quality for the MER program is done on a monthly basis at irregular stages of the spring-neap tidal cycle. Flushing times more representative of typical conditions are therefore required.

The tidal prism data from tidal gaugings were adjusted in a three-stage process as follows:

1. The ratio of the Fort Denison tidal range recorded on the gauging day (averaged over the ebb and flood tides) to the long-term average Fort Denison tidal range (calculated between MHW

and Mean Low Water) was used to linearly scale down the gauged tidal prism (also averaged over ebb and flood). However, tidal planes were calculated for the period 1987 to 2006 using water level records from Middle Head as the recorder has been operated continuously by MHL as part of a state-wide network.

The tidal planes relative to AHD are as follows:

0	HHWSS	1.00 m AHD

- o MHWS 0.66 m
- o MHW 0.53 m
- o MHWN 0.41 m
- o MSL 0.03 m
- o MLWN -0.33 m
- o MLW -0.47 m
- o MLWS -0.60 m
- o ISLW -0.85 m.

The mean adjustment was -24% with an inter-quartile range of -35 to -13%. Only two estuaries, Port Hacking and St Georges Basin, were corrected upwards

- 2. Long-term water level recorders are located in a number of estuaries. Some of those estuaries, particularly in riverine systems, have more than one recorder. Tidal plane analysis of these long-term records has been conducted by MHL (MHL 2003). Tidal planes were available in eight estuaries with tidal gaugings. For those eight, the tidal range at the downstream gauging line was interpolated and the ratio between the interpolated value and the Fort Denison corrected range applied as a linear adjustment. Where the gauging was between the entrance and the most downstream water level recorder (a further nine estuaries), the range at the recorder was adopted. Five more estuaries had tidal planes available at or near their entrances. The mean adjustment was -6 per cent with an inter-quartile range of -14 to +5 per cent. Ten estuaries were found to be shoaled (mean adjustment of +10 per cent) and 12 scoured (mean adjustment of -18 per cent)
- 3. For the 46 estuaries with tidal gaugings upstream of the entrance, a further addition to the tidal prism was required to include the volume between the gauging line and the entrance mouth. The estuary surface area polygons were manually examined on-screen and the entrance channel width at the gauging line determined then checked, to be generally representative of the downstream inlet channel width. The additional tidal prism was calculated as the product of the gauging line width, the distance from the entrance mouth and the average of the tidal range at the gauging line location and the ocean (which was taken as the mean Fort Denison range). The average additional volume was 18 per cent.

4.4.2 Tidal range

Tidal range can be calculated by dividing the volume of the average tidal prism by the surface area. Surface areas are available for open water (including seagrass extent), mangrove and saltmarsh. As mangroves and saltmarsh can occupy up to 69 per cent and 43 per cent respectively of the total surface area of an estuary it is important to consider which surface area best represents the average for the estuary. Saltmarsh typically occurs between Mean High Water and Highest Astronomical Tide. As the tidal range of interest lies between Mean High Water and Mean Low Water, saltmarsh areas were excluded.

At least five mangrove species are found in NSW with the two most common being Grey Mangrove and the River Mangrove. Mangrove species occur in zones parallel to the shoreline, determined by tide levels and soil conditions. The River Mangrove occurs in the fringing zone, adjacent to open water, close to the Mean Sea Level mark. The Grey Mangrove is found behind the River Mangrove at a level just above Mean Sea Level and extends inland to a level well below Mean High Water. The Grey Mangrove occupies extensive areas of inter-tidal flats whereas the River Mangrove tends to be confined to a narrower fringing band closer to the waterbody. For the purposes of the MER program, the surface area adopted was open water (including seagrass extent) plus 50 per cent of the mangrove area in recognition of the large expanse of relatively flat inter-tidal area associated with some estuaries and their extent of colonisation by the Grey Mangrove. This reduced the mean tidal range across the 46 estuaries with tidal gaugings from 0.54 m to 0.45 m and importantly, produced tidal ranges that appeared reasonable in those estuaries with substantial mangrove and saltmarsh communities.

For the 34 permanently open estuaries without tidal gaugings, 18 were bays or drowned river valleys and were assigned a Fort Denison range of 1.01 m while the remaining 16 were rivers, lakes, lagoons or creeks and were assigned the mean range of 0.45 m.

A check was made on the internal consistency of the derived tidal range, tidal prism, estuary volume and area as follows:

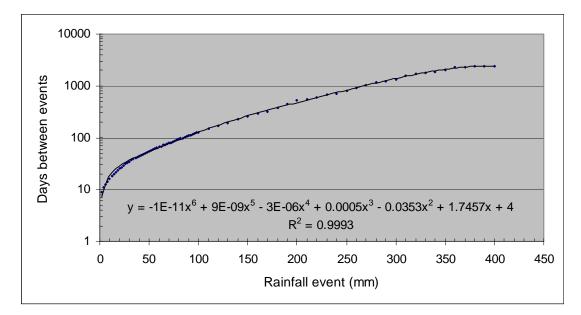
- A comparison was made between the derived tidal range and the tidal range established from the tidal gauging corrected for the spring/neap tidal cycle. It would be expected that the derived tidal range over the full estuary length would be less than the tidal range at the downstream gauging site
- A comparison was also made between the derived tidal range and the ocean tidal range which could be expected to provide an upper limit to the derived tidal range
- The percentage of the tidal prism to total estuary volume was calculated and would be expected to be significantly less than 100 per cent. Systems that are relatively shallow and short would likely approach 100 per cent as they can be close to fully drained at low tide.

Two inconsistencies were observed being Mooball Creek and Sandon River where the tidal prism ratios were 135 and 91 per cent respectively. On examination of the tidal gauging records, it was evident that the high tide levels were between 0.8 and 0.9 m AHD. The gauged tidal prisms were therefore expanding into saltmarsh and other low-lying areas above 0.6 m AHD which was the level at which areas and hence ranges and prisms have been derived. As both these systems are relatively short and open to the ocean (Mooball artificially trained and Sandon naturally open) it is reasonable to assume the average tidal range as the spring/neap adjusted range at the downstream gauging location. This reduced the tidal prism ratios to 86 and 81 per cent respectively.

4.4.3 Estuary flushing time

Flushing time was calculated for all those estuaries with a tidal gauging which included a number of systems that are intermittently open. The tidal prism method, as previously described, was used adopting a typical exchange efficiency coefficient of 0.15.

For the remaining 104 intermittently open estuaries without a tidal gauging as well as those that were open for a long enough period to warrant a tidal gauging, the concept of a flushing time required different treatment. For intermittently open estuaries that are closed for long periods of time, a flushing time can be approximated by the period the estuary remains closed.


When intermittent estuaries open, water levels drop dramatically as the entrance berm is breached and the estuary is largely flushed during breaching and the ensuing tidal influence. The period until next closure occurs depends on the relative energy of tidal and freshwater flows keeping the entrance open compared with offshore wave and current energy transporting sediment alongshore infilling and ultimately closing the entrance. Based on water level records from intermittently open estuaries, complete closure generally occurs when the beach berm has rebuilt up to about 0.6 m AHD. Breaching levels can be between 2.5 m and 3.0 m AHD or higher.

The flushing time can be estimated by comparing the volume of runoff to the volume of water between the closing level of 0.6 m and the breaching level of 2.5 m AHD. This will give an upper bound to the number of times an entrance may open in a year and a corresponding lower bound to the flushing time. The actual flushing time is likely to be longer due to uncertainties associated with the following:

- A significant proportion of the runoff beyond the initial volume is required to generate a breakout is likely to flow directly to the ocean
- The volumes between 0.6 m and 2.5 m AHD are conservatively calculated as the total estuary surface area is held constant between those two levels
- Breakout levels are likely to vary between 2.5 m and >3.0 m AHD.

For those intermittently open estuaries with relatively large surface areas compared to catchment area, rainfall over a number of events is required to breach the entrance berm, which means these uncertainties are less significant. For smaller systems, relatively minor rainfall will breach the entrance berm so that the flushing times simply converge to the period between rainfall events that breach the berm.

To calculate this period, the volume of runoff and direct rainfall onto the estuary surface required to raise water levels from 0.6 m to 2.5 m AHD was determined. A rainfall record taken from 1889 to 2007 at the Milton Post Office near Ulladulla on the south coast, where small intermittently open lakes, lagoons and creeks are concentrated, was analysed for the frequency of rainfall events as shown in Figure 12. Assuming the entrances to very small systems close relatively rapidly after rainfall, the period between rainfall events sufficient to breach the berm was taken as the flushing time. This procedure was applied to all intermittently open estuaries with the lower bound to flushing times, as defined above, of less than 20 days. This duration approximates the 30 days found by DECC (2009a) as being the lower limit where rainfall event frequency begins dominating the period between openings. A total of 46 estuaries were captured by this process representing 25, 30 and 74 per cent of type 4B, 4C and 4D estuaries respectively. The average flushing time was raised from nine to 29 days which is likely to be a more realistic estimate. These estimates could be considerably improved by constructing a simple daily water balance model for each estuary.

Figure 12: Rainfall event frequency at Milton Post Office

4.4.4 Freshwater flushing

As salinity data were not available for many estuaries, the freshwater residence time has not been calculated. However, there is likely to be further salinity data available from sources not accessed for the MER program that would expand the current database. The use of the freshwater fraction method is most valid in wedge-shaped, well-mixed, relatively vertical riverine estuaries with significant freshwater inputs. It may be that different methods of calculating water residence time are appropriate for different estuarine geomorphic types. This is an area that warrants investigation for the next round of SOC reports.

4.4.5 Estuary dilution

The capacity of an estuary to dilute incoming freshwater flows, and associated nutrients and suspended sediments, during a rainfall event and baseflows from ongoing seepage of groundwater flows can be measured by the relative volume of the estuary compared to catchment inflows. This is a simplistic approach as mixing is greatest at the point of entry of inflows and decreases with distance away from the inflow. In the absence of hydrodynamic models to simulate this effect, assessing relative volumes provides a first pass at dilution capacity. A dilution factor was calculated as the ratio of the estuary volume to the volume of runoff from a large rainfall event, assumed at 10 per cent of the total annual inflow. As an example, a factor of 15 would indicate that the estuary volume is 15 times larger than the runoff from a large rainfall event. Substantial dilution could be expected and therefore only a minor deterioration in water quality.

A summary of the hydrodynamic data discussed above is shown in Appendix 9.

5. Estuary classification

5.1 Purpose of classification

Estuaries are characterised by high biological production and diversity which, together with their geomorphic and hydrodynamic settings, make no two systems exactly alike. Classification is a process of grouping units such as estuaries, with similar properties that inform or simplify a management question (Kurtz et al. 2006). Classification can be used as a tool for (Engle et al. 2007):

- describing and developing an inventory of estuarine systems
- increasing understanding of differences and similarities between hundreds of semi-discrete units
- identifying and prioritising conservation efforts
- managing ecosystem resources
- guiding research.

By establishing groups with similar properties, classification avoids comparing systems inappropriately. However, clear boundaries are often difficult to define as diversity in aquatic ecosystems is part of a continuum (Hale & Butcher 2008). The aim is to minimise 'noise' through partitioning of variability and make it easier to identify signals of human disturbance as well as landscape sensitivity (US EPA 2002; Detenbeck 2000). Variability within classes is minimised, and is maximised between classes (US EPA 2001).

Attempts at aquatic ecosystem classification have relied on attributes such as geomorphology, salinity distribution, water circulation patterns, hydrology, water chemistry, biological species or communities. Burgess et al. (2004) lists 25 different methods of classifying coastal systems in the US. The common use of physical attributes such as geomorphology and hydrology for classification of aquatic ecosystems is based on the assumption that the organisation and function of biological communities is largely in response to these physical 'controlling factors' (Hale & Butcher 2008). The US EPA (2001) suggest that geomorphic classification schemes also provide insight to the circulation structure and are a first-order estimate of water residence time or flushing characteristics. While geophysical context is a fundamental determinant of variation in biological systems, it is commonly acknowledged that classification must be appropriate to the specific goals being sought (Karr 1999).

More generally, classification schemes can be characterised firstly as either geographically dependent or geographically independent (Detenbeck et al. 2000). Geographically dependent schemes have boundaries fixed in space and include ecoregions and ecological units. Geographically independent schemes can be based on physical, environmental or ecological variables or some combination thereof. They can be either structural or functional and relate to the landscape, watershed or ecosystem/community.

Hale & Butcher (2008) proposed four types of classification system:

- Unstructured, in which there are no explicit criteria for classifying different systems
- Driver, which is based on abiotic drivers of ecosystems principally geomorphology and/or hydrology

- Biological, which is based on bottom-up classifications based on species or communities
- Holistic, which is a combination of drivers, responses, abiotic and biotic components.

The choice of classification system will depend on the available data and the purpose of classification. Within the context of the MER program the primary objective was to group estuaries by their stressor response as measured by the adopted water, macrophyte and fish indicators. This is a holistic approach in which abiotic drivers are identified and the biological responses used to validate the classification. The response-based classification can then be used to:

- establish reference conditions for each class
- set trigger values for management
- broadly determine the cause of impairment
- predict changes in environmental condition as the stressors change.

By grouping estuaries into classes with similar responses to stressors, a management framework can be established for all 184 NSW estuaries and management prescriptions extrapolated across estuaries with limited monitoring or bio-physical data. Major driving processes can be identified based on conceptual models developed and tested for each type. Data available on stressors and response can be used to validate and refine the models and classification scheme.

5.2 Existing classification systems

Comprehensive reviews of existing systems for classifying estuaries in NSW can be found in a number of publications including Hale & Butcher (2008) and Barton et al. (2007). Most are based on one or more of geomorphology, salinity and hydrology. None of the systems available specifically consider grouping estuaries by their response to stressors.

Within NSW the most widely used classification scheme for estuaries is that of Roy et al. (2001) which is based on geology and geomorphology. Estuaries were classified into geomorphological group, type and evolutionary stage (Table 4 and Table 5) but not all types are represented in NSW. Although the estuarine classification system of Roy et al. (2001) is based on physical rather than biophysical attributes the scheme was seen as providing a framework to characterise estuary ecology.

Groups	Types (and examples)				
I. Bays	1. Ocean embayments (Botany Bay)				
II. Tide dominated estuaries	2. Funnel-shaped macrotidal estuary (South Alligator River)				
	3. Drowned valley estuary (Hawkesbury River)				
	4. Tidal basin (Moreton Bay)				
III. Wave dominated estuaries	5. Barrier estuary (Lake Macquarie)				
	6. Barrier lagoon (The Broadwater/South Stradbroke Island)				
	7. Interbarrier estuary (Tilligerry Creek)				
IV. Intermittent estuaries	8. Saline coastal lagoon (Smiths Lake)				
	9. Small coastal creeks (Dalhousie Creek)				
	10. Evaporative lagoons (The Coorong)				
V. Freshwater bodies	11. Brackish barrier lake (Myall Lakes)				
	12. Perched dune lake (Lake Hiawatha)				
	13. Backswamp (Everlasting Swamp, Clarence River)				

Table 4: Roy et al. (2001) classification scheme

Table 5:Stages of sediment infilling (Roy et al. 2001)

Infilling stage				
А	Youthful			
В	Intermediate			
С	Semi-mature			
D	Mature			

The Roy et al. (2001) scheme has been tested by Saintilan (2004) to assess the extent to which it and its associated geomorphic units predict the floral and faunal characteristics of an estuary. Saintilan (2004, p.600) found 'the classification system proposed by Roy et al. (2001) is an effective means of distinguishing between estuaries on the basis of geomorphic units and to a lesser extent their biological characteristics'.

Another classification scheme widely adopted at the national scale is that of Heap et al. (2001) that used energy to classify the 780 estuaries and coastal waterways contained in the Australian Estuarine Database. The ratio of wave energy to tide energy at the mouth of the estuary was determined, with the amount of river energy subsequently used to distinguish systems that are characterised by river processes. Seven subclasses were derived: tide dominated estuary, tide dominated delta, wave dominated estuary, wave dominated delta, tidal flat/creeks, strandplain and others including coastal creeks, coastal lagoons, embayments, drowned river valleys and freshwater lakes.

5.3 Eutrophication indicator response classification

Burgess et al. (2004) propose that three primary factors control the stressful actions of pollutants in aquatic systems:

- The residence time of water and pollutant in the system
- The natural processing capacity of the system for the pollutant including the pathways that decompose, bind, take-up or sequester the material
- Ancillary factors that modify the form of a pollutant, the rate of processing, or the kind of action the pollutant exerts within the ecosystem.

For nutrient loading specifically, NRC (2000) proposed a number of factors important to characterising the susceptibility of estuaries to nutrient loading including:

- system dilution and water residence time or flushing rate
- ratio of nutrient load per unit area of estuary
- vertical mixing and stratification
- algal biomass, eg chlorophyll a
- wave exposure (especially relevant to seagrass potential habitat)
- depth distribution (bathymetry and hypsographic profiles)
- ratio of side embayment(s) volume to open estuary volume or other measures of embayment influence on flushing.

Many of these factors are likely to be common in characterising the susceptibility of estuaries to a wider range of catchment and waterbody stressors other than nutrients (Kurtz et al. 2006) and will drive the response of the three condition indicator groups of eutrophication, habitat and fish.

Of the factors listed in NRC (2000) driving the response of algal biomass and water clarity, those amenable to quantification and application across all 184 estuaries were dilution and water residence time. Estuaries with limited inputs and/or that dilute well and flush quickly will assimilate and/or export pollutants readily, resulting in lower pollutant concentrations. In addition, estuaries with residence times shorter than the doubling time of algal cells will inhibit formation of algal blooms.

5.3.1 Dilution and flushing analysis

Dilution and flushing times were plotted against each other for the 184 estuaries as shown in Figure 13. Estuaries are deemed intermittently or permanently open in accordance with Roy et al. (2001) as extended by OEH (see Section 5.3.3 and Table 7). The plot has been shaded green to indicate systems with high dilution capacity and short flushing times and therefore low vulnerability to the effects of nutrient pollution (Bricker et al. 1999). By contrast, systems falling within areas shading towards orange are considered highly vulnerable. Figure 14 and Figure 15 present two plots, one for the Roy et al. (2001) geomorphic types 1, 2 and 3 corresponding to ocean embayments, drowned river valleys and barrier estuaries, most of which are permanently open, and the other for type 4 which are mainly systems closed for most of the time. The different geomorphic types are overlaid within each plot using multiple colours to assist in visually detecting natural groupings. A number of observations were made:

- For dilution, there are almost six orders of magnitude difference (10⁶) between the capacity of large embayments and very small creeks to dilute pollutant inputs. This confirms the high variability ascribed to estuarine dynamics generally
- For permanently open systems, flushing times are less variable, although still ranging across more than two orders of magnitude (10²) from three to 470 days
- For large bays, dilution factors of between 10 to more than 100 imply rainfall events will only generate a minor pulse of pollutant input representing 10 per cent and one per cent respectively, of the estuary volume at 0.6 m AHD. A relatively small rise in receiving water pollutant concentrations could be expected. More than half the drowned river valleys also fall within this dilution range. From the water quality analysis of seven drowned river valleys, the coefficient of variability of chlorophyll a (standard deviation/mean) averaged 1.16 (range 0.84 to 1.46)
- Some intermittently open lakes with the type 4A classification also have large dilution capacity. Large rainfall events of 10 per cent or more, (around 150 mm) of annual runoff are unlikely to breach the entrance berm so that all inflowing pollutants will be retained and processed within the estuary
- At the other end of the spectrum, very small creeks and lagoons with dilution factors of 0.1 to 0.001 experience volumes of runoff from 10 to 1000 times larger, respectively, than their typical volumes at 0.6 m AHD. During rainfall events, the water quality of these systems will quickly reflect the pollutant concentrations of inflowing water. This is confirmed by the water quality analysis where the average coefficient of variability for 17 type 4C and 4D systems was 1.51 (range 0.69 to 4.62), or 30 per cent higher than for drowned river valleys. It is also likely that with these volumes of inflowing water, the entrance berm will be breached and a high proportion of runoff will discharge directly to the ocean
- For estuaries between these two extremes, water quality will reflect the combined influence of the initial dilution of pollutants, the speed of flushing following a rainfall event, whether an entrance opens or scours during the event, the relative size of tidal prism keeping the entrance open compared to entrance exposure to the offshore wave climate and longshore transport tending to close the entrance, and climatic variability in rainfall, runoff and evaporation.

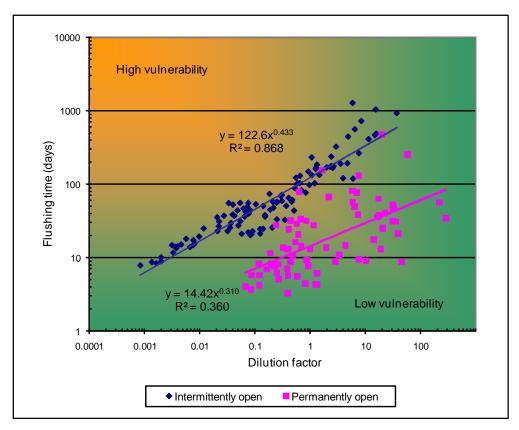


Figure 13: Dilution and flushing for intermittently and permanently open systems

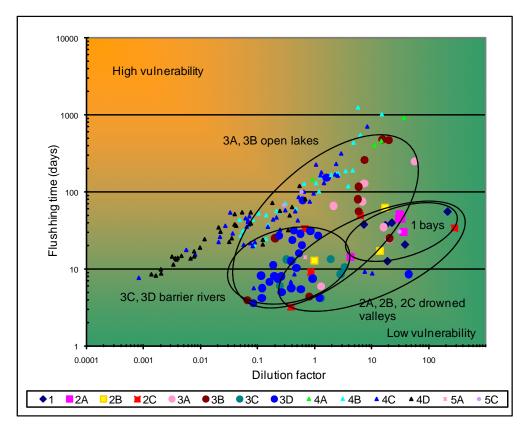


Figure 14: Dilution factor and flushing time for Roy et al. (2001) types 1, 2 and 3

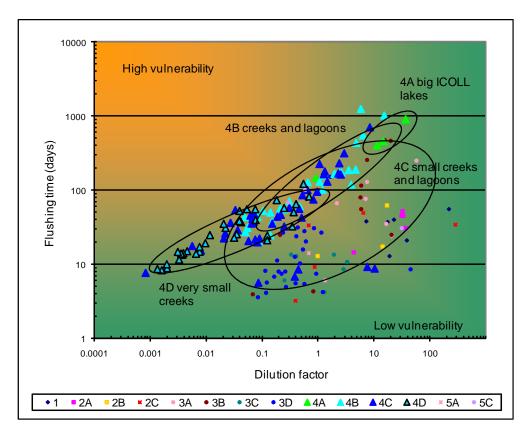


Figure 15: Dilution factor and flushing time for Roy et al. (2001) type 4

5.3.2 Conceptual models for NSW estuaries

Based on observations from the above plots and the water quality analysis, three conceptual models of estuarine response to pollutant inputs were hypothesised and tested:

1. For systems with high dilution capacity and a concomitant minor deterioration in water quality during rainfall, the significance of flushing time is reduced.

From the plots above, a natural breakpoint in the clustering of data for each geomorphic type occurs at a dilution factor of about 3. This means for a rainfall event which produces runoff equivalent to 10 per cent of the total annual runoff, the volume of the estuary is three times larger than the 10 per cent event runoff. A 10 per cent event is relatively infrequent so that for lesser rainfall, the dilution factor would be greater than 3. Some initial deterioration in water quality would be expected with a 10% runoff event for systems with a dilution factor greater than 3 but it could be expected to be small.

From the plots, dilution factors greater than 3 correspond to relatively long flushing times of between 10 and 1000 days. Internal processing of pollutants will dominate flushing in reducing concentrations back to ambient levels. Systems that match the criteria of dilution factor greater than 3 include examples of embayments, drowned river valleys, large permanently open and intermittently open (but mostly open) barrier estuaries, primarily lakes

2. A second clustering of data on dilution, flushing and geomorphic type occurs for those systems defined by Roy et al. (2001) as riverine estuaries or the mature form of wave-dominated estuaries (3C and 3D). These correspond to dilution factors ranging from about 0.1 to 3 and flushing times of three to 30 days.

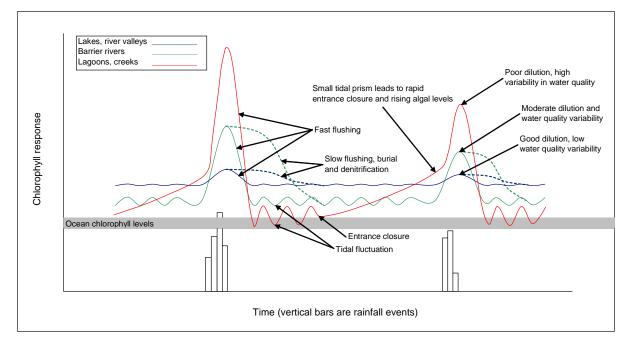
For a dilution factor of 0.1, the volume of runoff during a 10 per cent event is ten times the volume of the estuary so that the water quality will reflect the poorer quality of inflowing water. Following the event, internal processing and flushing will reduce pollutant concentrations relatively quickly. As the dilution factor increases up to 3, the effect of rainfall events on water quality is reduced.

Due to the role of flushing in this conceptual model, only permanently open systems were included with examples being most mature barrier estuaries, including some open lakes, and some drowned river valleys

3. The third and largest group of systems are the small, intermittently open lakes, lagoons and creeks. These all have dilution factors less than 3 but range down to extremely small values of about 0.001.

For systems with very small dilution factors, relatively minor rainfall will break open the entrance berm. Generally these systems are very small in surface area so the tidal prism will also be small and longshore sediment transport from coastal processes will rapidly close the entrance. These systems are very dynamic with highly variable water quality from the constant cycle of opening, closing, filling and subsequent breakout. Often, samples are taken for testing of water quality in these systems only well after severe weather episodes have passed.

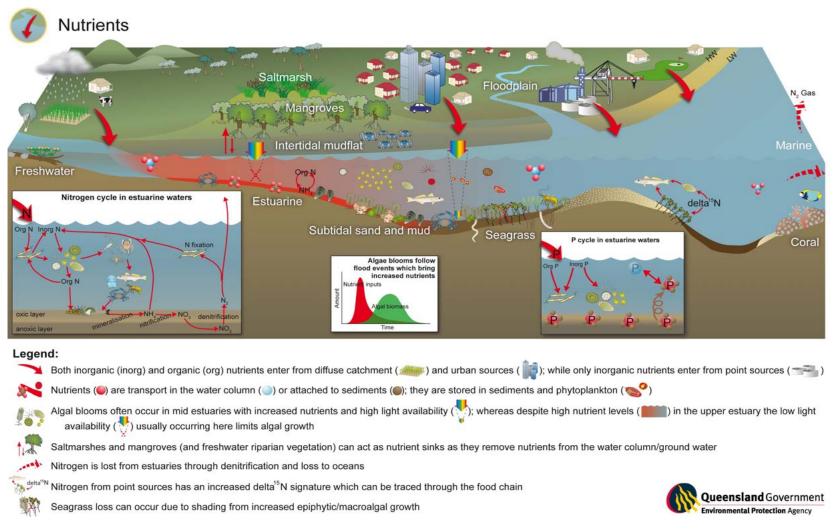
Within these three broad classes, there are likely to be further divisions that could be made. For example, embayments and large intermittently open lakes may have similar dilution and flushing characteristics and hence water quality response but their biological assemblages may be quite different because of their hypsography, light regime, stratification and benthic processes. Similarly, the large number of intermittently open small systems will have a continuum in opening regime from breaking out with minor rainfall to remaining closed for extended periods of time.


Classification seeks to account for the effects of natural variability to make it easier to identify signals of human disturbance and predict management responses. An excessive number of classes will impede the design of cost-effective monitoring programs and add to the cost of establishing reference conditions. Too few classes will make it more difficult to detect and define the biological effects from natural variability and human activity (US EPA 2002).

The three estuary types corresponding to the three conceptual models described above have been labelled as 'Lakes', 'Rivers' and 'Lagoons' respectively representing the dominant geomorphic type. Within each class exist geomorphic subclasses, including the following:

- Lakes: open embayments, drowned river valleys, large permanently open and intermittently open lakes as defined by Roy et al. (2001)
- Rivers: mature barrier river estuaries also as defined by Roy et al. (2001)
- Lagoons: intermittently open lagoons and creeks which can be separated by those with dilution ratios above and equal/below 0.1 respectively.

Conceptually, the chlorophyll response of the three estuary types can be represented as shown in Figure 16. The conceptual model changes for each estuary class as the algal biomass response, expressed in terms of chlorophyll a concentration, changes with the dilution and flushing characteristics of each class. For the same rainfall, the magnitude and rate of increase in chlorophyll a is greater for lagoons, then lesser for rivers and then lower again for lakes (likewise the rate of return to ambient conditions). Within each class, longer flushing times will mean a slower decline of chlorophyll a concentrations back to ambient. The ambient chlorophyll concentration levels for lagoons and creeks approximate oceanic concentrations for the relatively short period of time following breaching when tidal exchange is maximised, but rises following entrance closure.


Rissik at al. (2009) found nutrients increased significantly in an urban coastal lagoon the day following rainfall before reverting to pre-event levels five days later. The biomass of phytoplankton grew tenfold within a week while zooplankton responded within a day with a twofold increase as they grazed the phytoplankton. The assemblage of phytoplankton and zooplankton increased dramatically after one day and again six days later, then returned to the original community within two weeks of the initial event. Growth rates of the assemblage would have been underestimated if dilution had not been accounted for. Other similar studies reviewed in Rissk et al. (2009) also linked rainfall with high phytoplankton production in temporarily open/closed systems.

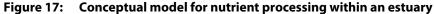


Figure 16: Conceptual model of chlorophyll response in the three generic estuary types

5.3.3 Comparison with other conceptual models

A generalised conceptual model of nutrient dynamics within an estuary is shown in Figure 17 (OZCOASTS <u>www.ozcoasts.org.au</u>). This model has schematised the estuary geometry for the purpose of displaying nutrient-related processes. Smaller scale effects will be present in all estuaries due to variation in depth profiles, entrance condition, salinity zonation, catchment characteristics etc. In a study of persistently high levels of phytoplankton in Berowra Creek, a tributary of the Hawkesbury–Nepean River system, Rissik et al. (2007) found a deep hole at the bloom site (>15 m) increased residence times sufficiently to exponentially increase the growth rate of algae and result in large accumulations of cells and high rates of primary production. The smallest zooplankton size classes also responded but the relationship with chlorophyll a concentrations decreased in the larger particle size classes indicating an uncoupling between chlorophyll a and larger zooplankton.

Geosciences Australia (Heap et al. 2001) developed schematic conceptual models for each of the six subclasses of estuaries represented in NSW. These subclasses were divided into tide dominated and wave dominated:

- Tide dominated subclasses: tide dominated estuary (TDE), tide dominated delta (TDD), tidal flat/creeks (TC)
- Wave dominated subclasses: wave dominated estuary (WDE, which can include coastal lagoons [CL]), wave dominated delta (WDD) and strandplain (SP).

The main characteristics of the three chlorophyll response classes are summarised and compared to the classification systems of Roy et al. (2001) and Heap et al. (2001) in Table 6. There is some limited convergence between the three classification systems but the quantification of dilution and flushing characteristics together with entrance condition, has resulted in examples of both Roy et al. (2001) and Heap et al. (2001) being included in generally more than one of the new chlorophyll response classes.

	Classification for chlorophyll a response				
Attribute	Lake	River	Lagoon		
Total no.	43	44	97		
Entrance condition	Permanently open (29) Some intermittent (14)	All permanently open	All intermittent		
Geomorphic types	Embayments (6) Drowned river valleys (9) Large permanently open lakes (14) Large ICOLLs with high dilution (14)	Riverine estuaries (44)	Small lakes (22) Coastal lagoons (16) Small rivers (3) Coastal creeks (56)		
Roy et al. (2001) type (see note)	All 1, 2A Some 2B, 2C Most 3A, 3B One 3C and 3D Almost all 4A Some 4B, 4C	Some 2B, 2C Some 3A, 3B Almost all 3C Almost all 3D Some 4C	Some 3B, 3D Some 4A Almost all 4B, 4C All 4D		
Heap et al. (2001) type	Embayments Wave dominated estuary Coastal lagoon	Wave dominated delta Wave dominated estuary Coastal lagoon Tidal creek	Wave dominated estuary Coastal lagoon		

Table 6: Comparison of classification schemes

	Classification for chlorophyll a response					
Attribute	Lake	River	Lagoon			
Dilution factor (ratio)	Very high: median 15 Quartiles 6–27 All ≥ 3	Low: median 0.4 Quartiles 0.2–0.9 All < 3	Very low: median 0.4 Quartiles 0.03–0.5 All < 3			
Flushing time (days)	Very long: median 56 Quartiles 31–255	Moderate: median 9 Quartiles 6–17	Long: median 62 Quartiles 23–71 Highly dependent on rainfall frequency			
Area (km²)	Large: median 9 Quartiles 3–33	Moderate: median 2.2 Quartiles 1.2–14	Small: median 0.10 Quartiles 0.02–0.28			

Note: (using numbering system from Roy et al. [2001]):

1 = bays, 2 = tide dominated (drowned river valleys), 3 = wave dominated (barriers), 4 = intermittent

A = youthful, B = intermediate, C = semi-mature, D = mature

ICOLLs = intermittently closed and open lakes and lagoons.

A summary of the new and existing classification systems for each estuary in NSW is shown in Table 7. The entrance condition is from Roy et al. (2001) from which the dominant condition was then assumed and reviewed. Using aerial photography, the Roy classification was extended by OEH from the 131 estuaries provided in Roy et al. (2001) to the 184 estuaries mapped as part of the Estuaries MER program. This extended classification as well as the original classification by Roy et al. (2001) should be confirmed using statistical analysis and field checking where necessary of physical and geomorphological characteristics.

Table 7:	Classification system for chlorophyll response
----------	--

Estuary	Dilution factor	Flushing (days)	Roy type	Heap type		Dominant	Area (I Catchment	(m²) Estuary	Response classification	Subclass
Tweed River	1.158	27.3	3D	WDE	O/T	0	1054.76	21.954	River	Barrier river
Cudgen Creek	0.687	14.2	5A	WDE	0/T	0	68.61	2.095	River	Barrier river
Cudgera Creek Mooball Creek	0.086 0.067	5.7 4.0	4C 3B	CL CL	0 0/T	0	60.55 109.14	0.409 0.524	River River	Barrier river Barrier river
Brunswick River	0.007	7.6	3D	WDD	0/T	ő	226.34	3.278	River	Barrier river
Belongil Creek	0.048	43.3	4B	CL	0,1	č	30.41	0.189	Lagoon	Creek
Tallow Creek	0.139	24.4	4B	CL	I	С	5.34	0.119	Lagoon	Lagoon
Broken Head Creek	0.305	70.7	4B			C O	1.12	0.053	Lagoon	Lagoon
Richmond River Salty Lagoon	0.569 0.643	28.7 101.9	3D 4C	WDD	0/T	C C	6861.84 3.57	37.776 0.159	River Lagoon	Barrier river Lagoon
Evans River	1.317	6.1	3A	WDD	o/t	ŏ	75.84	2.302	River	Barrier river
Jerusalem Creek	0.204	25.3	3B	CL	U, I	С	48.32	0.319	Lagoon	Lagoon
Clarence River	0.850	31.3	3D	WDE	O/T	0	22055.11	129.416	River	Barrier river
Lake Arragan	6.368	551.8	4B	CL	!	C	9.28	0.971	Lake	Lake
Cakora Lagoon Sandon River	0.547 1.237	120.6 4.2	4D 3D	CL WDD	 0	C O	12.33 131.52	0.229 2.144	Lagoon River	Lagoon Barrier river
Wooli Wooli River	0.923	7.6	3D	WDE	0/Т	ő	180.00	3.078	River	Barrier river
Station Creek	0.366	50.1	4D	WDE	1	С	21.36	0.255	Lagoon	Lagoon
Corindi River	0.481	10.4	3D	WDD	0	0	146.44	1.324	River	Barrier river
Pipe Clay Creek	0.040	52.0	4D	0		C	1.63	0.011	Lagoon	Creek
Arrawarra Creek Darkum Creek	0.124 0.076	24.2 55.0	4D 4D	CL		C C	17.82 6.11	0.114 0.055	Lagoon Lagoon	Lagoon Creek
Woolgoolga Lake	0.103	52.7	4B	WDE	i	С	21.02	0.055	Lagoon	Lagoon
Flat Top Point Creek	0.053	54.9	4D		i	C C	2.57	0.022	Lagoon	Creek
Hearns Lake	0.211	56.7	4B	CL	1		6.60	0.102	Lagoon	Lagoon
Moonee Creek	0.326	13.4	3C	CL	0	0	41.11	0.278	River	Barrier river
Pine Brush Creek	0.012	24.6	4D		 0	C O	7.34	0.016	Lagoon	Creek Borrior river
Coffs Creek Boambee Creek	0.249 0.393	6.2 5.7	3C 3D	CL WDE	0	0	24.04 48.48	0.459 0.963	River River	Barrier river Barrier river
Bonville Creek	0.198	8.1	3D	WDE	ŏ	0	113.47	1.496	River	Barrier river
Bundageree Creek	0.001	7.8	4C		I	С	10.12	0.003	Lagoon	Creek
Bellinger River	0.190	11.4	3D	WDD	O/T	0	1100.32	8.019	Řiver	Barrier river
Dalhousie Creek	0.151	35.8	4C	CL		C C	6.26	0.068	Lagoon	Lagoon
Oyster Creek Deep Creek	0.123 0.506	21.0 43.2	4D 4C	CL WDE	I/(O)	C C	16.78 89.80	0.139 1.084	Lagoon Lagoon	Lagoon Lagoon
Nambucca River	0.534	16.1	3D	WDD	0/T	ŏ	1298.93	11.366	River	Barrier river
Macleay River	0.408	23.9	3D	WDD	O/T	0	11287.03	27.393	River	Barrier river
South West Rocks Creek	7.543	9.3	4C	CL	O/T	0	3.67	0.827	Lake	Lake
Saltwater Creek (Frederickton)	0.290	68.4	5C	WDE	I	C	11.11	0.282	Lagoon	Lagoon
Korogoro Creek Killick Creek	0.811 1.957	4.4 166.9	3B 4B	CL CL	0	0	9.51 7.93	0.244 0.281	River Lagoon	Barrier river Lagoon
Goolawah Lagoon	0.585	100.3	5C	0L	i	C C	3.95	0.127	Lagoon	Lagoon
Hastings River	0.384	12.7	3D	WDD	O/T	0	3658.57	28.092	River	Barrier river
Cathie Creek	2.912	319.1	4C	WDE	I/(O)	C C	105.50	7.861	Lagoon	Lagoon
Duchess Gully	0.022	30.7	4D	WDE		C	10.59	0.025	Lagoon	Creek
Camden Haven River Manning River	5.747 0.435	80.6 31.6	3B 3D	WDE WDD	0/T 0/T	0	588.99 8124.50	31.390 32.268	Lake River	Lake Barrier river
Khappinghat Creek	0.435	32.2	4D	WDD	0/1	0 C	90.73	1.033	Lagoon	Lagoon
Black Head Lagoon	0.021	34.9	4D		i	С	1.99	0.009	Lagoon	Creek
Wallis Lake	6.996	76.0	ЗA	WDE	O/T	0	1196.90	92.802	Lake	Lake
Smiths Lake	36.454	915.8	4A	CL	I	С	27.97	10.011	Lake	Lake
Myall River Karuah River	30.977 0.870	30.8 9.2	5C 2C	WDE TDD	0	0	818.74 1448.42	112.525 14.122	Lake River	Lake Barrier river
Tilligerry Creek	44.658	8.6	3D	WDE	ŏ	ŏ	114.77	20.452	Lake	Lake
Port Stephens	31.438	52.0	2A	WDE	0	0	296.77	123.745	Lake	Drowned valley
Hunter River	0.604	20.4	3D	WDE	O/T	0	21366.95	41.830	River	Barrier river
Glenrock Lagoon	0.086	20.6	4B	WDE		C O	7.37	0.052	Lagoon	Creek
Lake Macquarie Middle Camp Creek	57.097 0.027	249.9 36.7	3A 4C	VVDE	O/T	C C	604.39 5.01	113.210 0.013	Lake Lagoon	Lake Creek
Moonee Beach Creek	0.003	14.6	4D		i	č	3.48	0.002	Lagoon	Creek
Tuggerah Lake	15.516	479.7	3B	WDE	I/(O)	Ċ	714.47	80.633	Ľake	Lake
Wamberal Lagoon	4.677	190.3	4B	CL	!	C	5.82	0.517	Lake	Lake
Terrigal Lagoon Avoca Lake	0.467 0.916	60.5 146.7	4B 4A	CL CL	ļ	C C	8.94 10.77	0.282 0.673	Lagoon Lagoon	Lagoon Lagoon
Cockrone Lake	1.063	130.5	4A 4B	CL	1	c	6.85	0.873	Lagoon	Lagoon
Brisbane Water	20.589	24.6	ЗA	WDE	Ó	0	152.55	27.216	Ľake	Ľake
Hawkesbury River	6.369	49.2	2C	WDE	0	0	21624.06	111.627	Lake	Drowned valley
Pittwater Broken Bay	285.561	33.9	2C 2C	WDE	0	0	50.77 12.93	18.365 17.144	Lake	Drowned valley Barrier river
Broken Bay Narrabeen Lagoon	0.679 3.893	33.3 119.0	2C 4B	WDE	I/(O)	C C	52.41	2.311	River Lake	Lake
Dee Why Lagoon	0.033	54.7	4D 4C	CL	(U) I	С	4.27	0.239	Lagoon	Creek
Curl Curl Lagoon	0.214	47.2	4C	CL	i	С	4.65	0.065	Lagoon	Lagoon
Manly Lagoon	0.068	42.9	4C	CL	ļ	Ċ	17.25	0.098	Lagoon	Creek
Middle Harbour Creek	30.652 4.330	45.7	2A 2A		0	0	76.98	6.114	Lake	Drowned valley Drowned valley
Lane Cove River Parramatta River	4.330	14.4 17.3	2A 2B		0	0	95.36 252.36	2.977 13.736	Lake Lake	Drowned valley Drowned valley
Port Jackson	32.492	45.8	2B 2A	WDE	ő	ő	55.74	28.968	Lake	Drowned valley
Cooks River	0.391	3.2	2C	TC	0	0	110.57	1.199	River	Barrier river
Georges River	17.206	62.5	2B	EMB	0	0	930.91	25.754	Lake	Drowned valley
Botany Bay	22.650	39.9	1	WDE	0	0	54.87	38.789	Lake	Bay
Port Hacking Wattamolla Creek	35.924 0.062	30.6 46.0	2A 4C	WDE	0	0 C	165.34 8.05	11.575 0.033	Lake Lagoon	Drowned valley Creek
Hargraves Creek	0.062	46.0 17.9	4C 4C			C C	2.05	0.033	Lagoon	Creek
Stanwell Creek	0.000	17.1	40 4D		i	с с с	7.69	0.009	Lagoon	Creek
Flanagans Creek	0.001	8.6	4D		i	Ć	2.02	0.002	Lagoon	Creek
Woodlands Creek	0.004	13.4	4D		!	с с с	2.00	0.004	Lagoon	Creek
Slacky Creek Bellambi Gully	0.003	11.5	4D		ļ	C	3.08	0.005	Lagoon	Creek
	0.008	14.7 21.8	4D 4C	CL CL	1	C	6.46 1.31	0.017 0.031	Lagoon Lagoon	Creek Creek
							1.01	0.001	Layoull	UIEEK
Bellambi Lake	0.075 0.021	22.7	4C	ČĹ	i	С	8.56	0.042	Lagoon	Creek
Bellambi Lake Towradgi Creek Fairy Creek Allans Creek					i I O	с со				

Bend Schwale 38,43 230 0 WDE OII C 23,24 13,74 Lake Es Monantar River 0,266 5.0 30 WDD 0 0 23.8 13,74 Lake River Barret river Monantar River 0,266 5.0 30 WDD 0 0 11,73 15,54 River Barret river Monantar River 0,266 5.0 30 WDD 0 0 11,73 15,54 River Barret river Constant River Barret river 0 0 0 12,83 0,204 River Barret river Constant River Barret river 0 0 0 13,84 0,328 Lakeon Constant River Lakeon Constant River Barret river 0 0 0 13,84 24,87 14,87 14,87 14,87 14,87 14,88 Lakeon Constant River Lakeon Constant River <t< th=""><th>Fotueny</th><th></th><th>Flushing</th><th>Roy</th><th>Heap</th><th>Entrance condition</th><th>Dominant</th><th>Area (k</th><th></th><th>Response</th><th>Subalaaa</th></t<>	Fotueny		Flushing	Roy	Heap	Entrance condition	Dominant	Area (k		Response	Subalaaa
Lake Binsvara 7.53 2007 38 VDE O(II) C 234:3 355:3 Lake Lake Lake Spring Cresk 0.077 4.88 4.0 VD 0 0 133 35:44 Rever Barner from Spring Cresk 0.077 4.88 4.0 WDE 1 C 15:88 0.052 Lapoon Cceed Copical Finer 0.119 4.2 30 CL 0 0 31:89 0.280 Rever Barrier fine Copical Finer 0.022 78:4 40 VDE 1 C 1:33 0.054 Lapoon Ccee Cararan Corol 0.118 8:3 4:0 1 C 1:33 0.054 Lapoon Ccee Lake <	Estuary Port Kembla	factor 38.543	(days) 20.9	type 0	type WDE	0	0				Subclass Bay
Monamura River 0.266 5.0 3D WDD O 0 117.33 1.534 River Barrier from Core Core Core Core Core Core Core Core	Lake Illawarra	7.530	260.7			O/(I)	С	238.43	35.529	Lake	Laké
Spring Totesk 0.072 48.8 4.C I C 5.533 0.052 Lagoon Core Core Core Statistics Crobed Nier 0.119 4.2 3.0 VDE I C 5.83 0.032 Hard Statistics Hard Statistics Core Core Core Statistics 0.022 4.2 3.0 VDE I C 5.83 9.0260 River Barret rive Barret rive Core Core Core Core Core Core Core Cor					wpp	1					
Manne Manners Creek 0.004 13.9 4D VDE I C 3.33 0.014 Lighton Center of the second					**00	Ĩ	С				Creek
Cooked Netro 0.119 4.2 3D C,CL O O 31.39 0.280 Rever Barrier function Constanting Creek 0.022 22.44 4C I C 12.33 0.034 Lageon Caranta Constanting Creek 0.022 22.44 4C I C 12.33 0.034 Lageon Caranta Creek 10.42 Constanting Creek 0.022 28.44 4C I C 19.79 0.005 Barrer five Constanting Creek 0.042 38.4 4C VI C 28.68 0.014 Lageon Creek Constanting Creek 0.066 38.14 4C VI C 2.834 0.057 Lageon Creek 0.067 Lageon Creek 0.067 Lageon Creek 0.067 Lageon Creek 0.067 Lageon Lageo					WDE		C				Creek
Sheatmare Roer 0.625 72.2 3D WDD 0 0 7085.38 29.383 Files Barrier International Control Consome Creek 10.188 8.9.4 40 1 C 6.333 6.2385 Lake Lake </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>						0					
Caranara Creek 0.022 25.4 4.C I C 1.23 0.034 Lapon C Calarana Coresk 0.040 8.3 4.D 0 0 6.602 2.326 Labon C Calarana Coresk 0.042 8.8 4D 1 C 16.79 0.006 Elabon C Calarana Coresk 0.042 8.8 4D 1 C 6.87 0.010 C 1.60 1.60 1.60 1.60 C 1.60 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>Barrier river</td></td<>							0				Barrier river
Carama Creek 10.188 8.5 4.C O O 6.80 2.385 Lake					WDE		C				Lake
Wowly Cally 0.483 64:3 4D I C 6.82 0.192 Lagoon Lagoon Creek Nooras Moora Creek 0.022 8.8 4C WDD 0 C 18.79 2.046 Lagoon Creek Park Rok Creek 0.040 9.3 4C WDD 0 C 8.83 0.044 Lagoon Creek Park Rok Creek 0.040 9.24 4D 1 C 8.43 0.046 Bargoon Creek Park Rok Creek 0.040 14.40 4D 1 C 3.43 1.40.46 Bargoon Creek Labo							C				
Currambere Creek 0.442 8.6 4C WDD 0 0 0 160.02 2.221 Miver Barrier free Barrier free Beach Lagoon 0.690 22.5 4C 1 C 24.57 0.414 Lagoon Creek 0.650 35.7 15 EMD 0 0 23.233 122.405 Lagoon Creek 0.656 14.4 14.61 4405 1405 14.50 14.5 1405 14						Ĩ	С				Lagoon
Moora Moora Creek 0.065 55.8 4.C I C 2.87 0.140 Lagoon Creek Barkout Creek 0.005 14.9 40 I C 6.88 0.005 Lagoon Creek Barges Bay 0.005 14.9 40 I C 6.848 0.005 Lagoon Creek Base Strearcages Basin 19.801 470.7 38 WE I C 35.44 47.65 Lagoon Creek Base Lake Lake <t< td=""><td></td><td></td><td></td><td></td><td></td><td> </td><td>C</td><td></td><td></td><td></td><td>Creek</td></t<>							C				Creek
Captains Basch Lagoon 0.080 22.5 4C I C 3.14 0.046 Lagoon Crees SI Godges Bain 21031 1535 1 EMB 0 0 315.75 42.007 Lagoon Crees Lake Lakee Lakee Lakee <td< td=""><td></td><td></td><td></td><td></td><td>WDD</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td></td<>					WDD	0	0				
Captains Basch Lagoon 0.080 22.5 4C I C 3.14 0.046 Lagoon Crees SI Godges Bain 21031 1535 1 EMB 0 0 315.75 42.007 Lagoon Crees Lake Lakee Lakee Lakee <td< td=""><td></td><td></td><td></td><td></td><td></td><td>i</td><td>č</td><td></td><td></td><td></td><td>Creek</td></td<>						i	č				Creek
Bardie Bays 217.031 55.5 1 EMB O O 32.39 122.407 Lake Lake Lagon Stationizatindicationinalinterationizationizationecolinerationizationerateco						1	С				Creek
Sit Georges Basin 19.801 470.7 38 WDE O O 315.75 40.759 Lake Lake Beerndaha Creek 0.837 44.802 1 C 23.722 0.075 Lake Lagoon Cree Corpola Lake 5.855 56.55 5.855 0.013 0.06 6.694 Lake					EMB	1					
Berrara Creek 0.140 49.9 48 CL I C 3 5.04 0.256 Lagoon Lagoon Company Lable 5.241 452 42 C 0 0 17.22 0.073 Lagoon Ceres Molardia 5.241 452 2.0 0.004 1.41 420 C 2.0068 Lagoon Ceres Molardia 0.004 1.41 420 C 0 0 0.332 Labse Barran Molardia 1.886 1.23 40 C 0 0 0.340 0.003 Labse Barran Barran Barran Barran Barran Lagoon La							0				Lake
Nermställs Creek 0.037 29.2 4C CL I C 17.22 0.037 Lagoon Circle Versionset Creek 0.004 27.1 38<						1	C				Lake
Conjola Laka 5.855 56.1 38 WDE O O 139.09 6.894 Lake Lake <thlapoon< th=""> Lapoon Lapoon</thlapoon<>						1	C				
Molgmock Creek 0.004 14.1 4D CL 1 C 2.72 0.005 Lagoon Crees Binaria 12.86 0.002 8.3 4D C C 4.35 0.005 Lagoon Crees Binaria 12.86 12.86 400E 000 C 64.41 1.449 Lagoon Composition <						Ö					Lake
Militäcking 0.002 8.3 4D I C 4.50 0.0035 Lagoon Cagoon Burnil Lake 7.480 130.0 30.005 0.001 0 6.033 0.033 Lake Bar Burnil Lake 7.480 130.0 30.005 0.001 0 6.074 4.143 Lake L						O(I)					Barrier river
Blackina 18.866 12.8 0 CL O 0.030 0.093 Lake Babure Burnil Lake 0.819 75.8 4.C WDE O(I) C 46.14 Lake Lake Lake Weino Lake 0.237 7.3 4.C WDE C 14.27 1.367 Lagoon Lagoon Lagoon Lagoon C 15.27 1.367 Lagoon C 16.0 0.314 Lagoon Creation Creation <td< td=""><td></td><td></td><td></td><td></td><td>CL</td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>					CL	1					
Tabbunie Lake 0.819 75.8 4C WDE OI C 44.14 Lagoon Lagoon Lagoon Meroo Lake 2.237 170.3 4C WDE I C 14.05 0.577 Lagoon C 53.8 0.317 Lagoon Creek O.042 35.8 4D I C 53.92 0.021 Lagoon Creek Cyce River 0.991 13.0 2B WDE O 0 17.223 River Barrier rive Cardiagon Creek					CL	Ö					Bay
Termei Lake 0.957 96.6 4C WDE I C 14.05 0.575 Lagoon Lagoon Willings Lake 0.247 57.2 40 I C 14.27 1.387 Lagoon Lagoon Lagoon Unras Lake 0.247 57.2 40 I C 6.388 3.599 Lake Lake Duras Creek 0.040 38.2 40 I C 5.92 0.021 Lagoon Creek Culenculus Creek 0.042 38.8 40 I C 5.92 0.021 Lagoon Cree Cycle Nier 0.072 10.0 40 I C 2.817 0.028 Lagoon Cree Salwair Creek 0.085 3.6 30 WDD O 0 2.822 0.012 Lagoon Cree Salwair Creek 0.035 3.6 30 WDD O 0 2.422 0.012 Lagoon Lagoon L											Lake
Meroo Lake 2.287 1 T0.3 4 C WDE I C 1 9.27 1.367 Lagoon Lagoon Cagoon Creak Buters Creek 0.039 38.1 40 U C 3.05 0.027 Lagoon Creak Lake Lake <td></td> <td></td> <td></td> <td></td> <td></td> <td>O(I)</td> <td>C</td> <td></td> <td></td> <td></td> <td></td>						O(I)	C				
Butters Creek 0.039 38.1 4D I C 3.06 0.027 Lagoon Creek Durns Creek 0.040 38.2 4D I C 58.38 3.599 Lake Lagoon Creek Outlong Creek 0.630 38.6 3D TC I(0) 0 15.16 11.18 Lagoon Creek Barrier rive Clyde River 0.991 13.0 2B WDE O 0 172.21 River Barrier rive Saltwater Creek (Roscate) 0.002 10.0 4D I C 2.800 3.444 Lake Ba Candiagan Creek 0.085 3.6 3D WDD O 91.90 1.353 River Barrier rive Candiagan Creek 0.085 3.6 3D WDD O 2.412.2 0.017 Lagoon Lagoon<						i	č				Lagoon
Durras Ceck 3.513 187.3 4B WDE I C 5.82 0.021 Lake Maloneys Creek 0.040 38.2 4D I C 6.542 0.021 Lagoon Cree Callencula Creek 0.042 38.2 4D I C 8.572 0.021 Lagoon Cree Callencula Creek 0.002 15.17 11.118 River Barrier rive Salware Creek 0.0574 5.5 3D WDE O 0 24.12 0.129 River Barrier rive Bengelio Creek 0.007 13.8 AD I C 16.33 River Barrier rive Cando Creek 0.032 22.77 AD C 16.33 O Cree C 13.35 River Barrier rive Cando Creek 0.032 22.77 AD C C 4.33 O C 2.43.1 AD C 16.37.3 Maioney Lagoon							C				Lagoon
Maloneys Creek 0.042 36.8 4D I C 8.17 0.028 Lagoon Creek Ciyde River 0.991 13.0 2B WDE O 0 17.228 River Barrier rive Saliwater Creek 0.0574 6.4 D VDD O 28.00 34.44 Lagoon Earrier rive Candigan Creek 0.0674 6.4 D VDD O 28.20 0.0123 River Barrier rive Candigan Creek 0.0674 8.1 3D VDD O 0 24.12 0.1033 Lagoon Creek Cong Creek 0.032 2.2.7 4D CL I C 6.32 0.011 Lagoon					WDE	1	C				
Cullendula Creek (1.630 153.6 3D TC (I(0) O * 15.16 1.118 River Bariter rive Batemans Bay C.727 37.9 1 WDE O O 1722.91 17.028 River Bariter rive Candlagan Creek 0.0574 5.8 3D WDD O 2.822 0.002 Lagoon Creek Bateman Creek 0.087 1.8 3D WDD O 2.412 0.133 River Bariter rive Bateman Creek 0.0261 1.8 3D WDD O 1.422 0.133 River Bariter rive Bateman Creek 0.0261 3.3 3D WDD O 1.422 0.016 Lagoon					WDL	i	č				Creek
Clyde River 0.991 13.0 28 WDE O 0 17.228 River Barrier rive Salwater Creek (Roscale) 0.002 10.0 4D I C 2.82 0.002 Lagoon Creek Candagan Creek 0.085 3.6 3D WDD O 0 24.12 0.129 River Barrier rive Candagan Creek 0.002 13.8 4D D C 16.32 0.011 Lagoon Creek Moruga River 0.261 8.1 3D WDD O 142.457 5.353 River Barrier rive Congo Creek 0.024 5.3 4D C C 2.43 4D Lagoon Creek Lagoon					TO						Creek
Batemars Bay 7.72 37.9 1 WDE O 0 0.800 34.484 Lake Bar Candaga River 0.574 5.5 3D WDD O 0 91.90 1.353 River Barrier rive Candaga Creek 0.007 13.8 4D I C 16.32 0.011 Lagoon Cree Congo Creek 0.032 2.27 4D CL I C 43.23 0.116 Lagoon Creac Congo Creek 0.133 4B CL I C 5.19 0.170 Lagoon											
Tomaga River 0.574 5.5 3D WDD O O 9.90 1.353 River Barrier rive Bengelic Creek 0.007 13.8 4D I C 1.632 0.011 Lagoon Creek Moruya River 0.281 8.1 3D WDD O 0.421.52 0.011 Lagoon Creek Meringo Creek 0.332 22.7 4D CL I C 5.29 0.072 Lagoon Cargoon Cargoon Lagoon							0				Bay
Candiagan Creek 0.085 3.6 3D WDD O O Q 24.12 0.129 River Barrier rive Greek Moruya River 0.261 8.1 3D WDD OT O 143.267 5.353 River Barrier rive Greek Meringo Creek 0.150 37.3 4B CL I C 43.19 0.011 Lagoon						I					Creek
Bengeliè Creek 0.007 13.8 4D I C 16.32 0.011 Lagoon Cree Congo Creek 0.032 22.7 4D CL I C 43.19 0.116 Lagoon Cree Meringo Creek 0.150 37.3 4B CL I C 5.29 0.072 Lagoon											
Congo Creek 0.032 22.7 4D CL I C 43.19 0.116 Lagoon Creek Kellys Lake 0.245 55.1 4B I C 5.29 0.072 Lagoon Lagoon <t< td=""><td></td><td></td><td></td><td></td><td>1100</td><td>Ĩ</td><td>С</td><td></td><td></td><td></td><td>Creek</td></t<>					1100	Ĩ	С				Creek
Meringo Creek 0.150 37.3 4B CL I C 5.29 0.072 Lagoon						O/T	0				Barrier river
Keltys Lake 0.245 55.1 4B I C 2.11 0.064 Lagoon Lagoon Lagoon Lagoon Tuross River 0.406 13.1 3C WDE O 0 1813.78 14.696 River Barrier rive Lake Tarourga 1.241 159.4 4B WDE I C 5.79 0.194 Lagoon Lagoon Lake Brounderee 2.528 164.7 4C WDE I C 41.64 2.365 Lagoon Lagoon Lake Rounderee 0.306 58.5 4C L I C 7.70 D.170 Lagoon Lagoon Kanga Lake 0.306 128.3 4B I C 2.77 0.977 Lagoon						1	C C				
Tuross River 0.406 13.1 3C WDE O 0 1813.78 14.696 River Barrier rive Lake Tarourga 1.241 159.4 4B WDE I C 5.72 0.194 Lagoon Lagoon Lagoon Lake Brou 2.528 164.7 4C WDE I C 4.164 2.365 Lagoon Lagoon Lake Mummuga 2.394 173.6 4B WDE I C 2.576 1.631 Lagoon Lagoon Kianga Lake 0.306 58.5 4C C I C 2.76 1.631 Lagoon Lagoon Mangudga Lake 5.794 1259.4 4B I C 0.97 43goon Lagoon Lagoon <t< td=""><td>Kellys Lake</td><td>0.245</td><td>55.1</td><td>4B</td><td></td><td>i</td><td>С</td><td>2.11</td><td>0.064</td><td>Lagoon</td><td>Lagoon</td></t<>	Kellys Lake	0.245	55.1	4B		i	С	2.11	0.064	Lagoon	Lagoon
Lake Brunderee 0.523 86.7 4C CL I C 5.72 0.194 Lagoon Lagoon <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>C</td><td></td><td></td><td></td><td>Lake</td></th<>						1	C				Lake
Lake Brou 1.241 159.4 4B WDE I C 5.99 0.328 Lagoon Lagoon <thlagoon< th=""> <thlagoon< th=""> <thlagoo< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td>C C</td><td></td><td></td><td></td><td></td></thlagoo<></thlagoon<></thlagoon<>						0	C C				
Lake Mummuga 2.394 173.6 4B WDE I C 25.76 1.631 Lagoon Lagoon Lagoon Wagonga Inlet 16.477 35.3 3A WDE O/T O 93.28 6.914 Lake Lagoon Lagoon <td>Lake Tarourga</td> <td>1.241</td> <td>159.4</td> <td>4B</td> <td>WDE</td> <td>1</td> <td>С</td> <td>5.99</td> <td>0.328</td> <td>Lagoon</td> <td>Lagoon</td>	Lake Tarourga	1.241	159.4	4B	WDE	1	С	5.99	0.328	Lagoon	Lagoon
Kianga Lake 0.306 58.5 4C CL I C 7.50 0.170 Lagoon Lagoon Lagoon Wagonga Inlet 16477 35.3 3A WDE OT 0.93.28 6.914 Lake Lake Little Lake (Narooma) 0.651 128.3 4B I C 2.17 0.097 Lagoon Lag						1	C				Lagoon
Wagonga inlet 16.477 35.3 3A WDE O/T O 93.28 6.914 Lake Lakoon Bullengella Lake 0.651 128.3 4B I C 0.59 0.149 Lagoon Lagoon Lagoon Bullengella Lake 1.312 181.6 4C WDE I C 9.47 0.596 Lagoon Lagoon Corunna Lake 2.617 174.1 4B WDE I C 2.974 2.082 Lagoon Lagoon Lagoon Vallaga Lake 2.379 233.8 4C WDE I C 2.77 0.115 Lagoon Lagoon Lagoon Bermagui River 1.314 42 2.0 WDE I C 12.61 0.471 Lagoon						1	c				Lagoon
Nanguidga Lake 1.312 181.6 4C WDE I C 9.47 0.596 Lagoon Lagoon Lagoon Corunna Lake 2.617 174.1 4B WDE I C 29.74 2.082 Lagoon	Wagonga Inlet	16.477	35.3	ЗA		O/T	0	93.28	6.914	Lake	Ľake
Nanguidga Lake 1.312 181.6 4C WDE I C 9.47 0.596 Lagoon Lagoon Lagoon Corunna Lake 2.617 174.1 4B WDE I C 29.74 2.082 Lagoon						1	C				Lagoon
Corunal Lake 2.617 174.1 48 WDE I C 2.974 2.082 Lagoon Lagoon Lagoon Little Lake (Wallaga) 1.056 228.9 4C I C 17.09 1.015 Lagoon					WDE	i	c				Lagoon
Wallago Lake 5.910 117.5 3B WDE O/I C 263.84 9.145 Lake Lake Bermagui River 1.314 4.2 3C WDD O/T O 83.46 1.989 River Barrier rive Baragoot Lake 1.264 166.3 4C C I C 12.61 0.471 Lagoon Lagoon <td>Corunna Lake</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>C</td> <td></td> <td></td> <td>Lagoon</td> <td>Lagoon</td>	Corunna Lake					1	C			Lagoon	Lagoon
Wallago Lake 5.910 117.5 3B WDE O/I C 263.84 9.145 Lake Lake Bermagui River 1.314 4.2 3C WDD O/T O 83.46 1.989 River Barrier rive Baragoot Lake 1.264 166.3 4C C I C 12.61 0.471 Lagoon Lagoon <td></td> <td></td> <td></td> <td></td> <td>WDE</td> <td>1</td> <td>C</td> <td></td> <td></td> <td></td> <td></td>					WDE	1	C				
Bermagui River 1.314 4.2 3C WDD O/T O 83.46 1.989 River Barrier rive Baragoot Lake 1.264 166.3 4C C I C 12.61 0.471 Lagoon Carao Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon					WDE		С				Lagoon
Murrah River 0.122 5.7 3D WDE O 0 195.76 0.679 River Barrier rive Bunga Lagoon 0.187 44.5 4C WDE I C 11.55 0.108 Lagoon C 26.52 3.865 Lake Lake <td>Bermagui River</td> <td></td> <td></td> <td></td> <td></td> <td>O/T</td> <td>0</td> <td></td> <td></td> <td></td> <td>Barrier river</td>	Bermagui River					O/T	0				Barrier river
Murrah River 0.122 5.7 3D WDE O 0 195.76 0.679 River Barrier rive Bunga Lagoon 0.187 44.5 4C WDE I C 11.55 0.108 Lagoon C 26.52 3.865 Lake Lake <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td> <td></td> <td></td> <td></td>							C				
Wapengo Lagoon 3.350 10.8 3C WDE O O 68.50 3.166 Lake Lake Middle Lagoon 0.689 81.5 4D WDE I C 27.32 0.506 Lagoon Cagoon Cagoon Cagoon Lagoon Cagoon Lagoon <	Murrah River		5.7	3D	WDE	Ö	0				Barrier river
Middle Lagoon 0.689 81.5 4D WDE I C 27.32 0.506 Lagoon Lagoon Nelson Lagoon 2.846 8.7 3C WDE O 0 26.98 1.194 River Barrier rive Wallagoot Lake 15.208 1027.1 4B WDE I C 26.52 3.865 Lake Lake Back Lagoon 0.054 31.0 4B I C 34.50 0.079 Lagoon Creet Back Lagoon 0.457 56.9 4C CL I C 31.35 0.359 Lagoon Cree NUE <td></td> <td>Lagoon</td>											Lagoon
Nelson Lagoon 2.846 8.7 3C WDE O O 26.98 1.194 River Barrier rive Bega River 0.164 6.9 3D WDE I/O O* 1934.83 3.306 River Barrier rive Bega River 0.164 6.9 3D WDE I/O O* 1934.83 3.306 River Barrier rive Bournda Lagoon 0.054 31.0 4B I C 24.50 0.079 Lagoon Creel Back Lagoon 0.457 56.9 4C CL I C 31.35 0.359 Lagoon Lagoon Lagoon Pambula River 1.935 13.6 3C WDE O 0 276.46 4.356 River Barrier rive Shadrachs Creek 0.008 15.5 4C I C 28.47 0.009 Lagoon Lagoon Lagoon Creado Boydtown Creek 0.057 20.8 4C <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></td<>							0				
Bega River 0.164 6.9 3D WDE I/O O* 1934.83 3.306 River Barrier rive Wallagoot Lake 15.208 1027.1 4B WDE I C 26.52 3.865 Lake Lake Lake Lake Lake Lake Lake Lake Lagoon Creel Back Lagoon 0.054 31.0 4B I C 34.50 0.079 Lagoon	Nelson Lagoon	2.846	8.7	3C	WDE	0	0	26.98	1.194	River	Barrier river
Bournda Lagoon 0.054 31.0 4B I C 34.50 0.079 Lagoon Creet Back Lagoon 0.457 56.9 4C CL I C 31.35 0.359 Lagoon Creator Lagoon Lagoon Lagoon Lagoon Lagoon Creator Lagoon							0 *				Barrier river
Back Lagoon 0.457 56.9 4C CL I C 31.35 0.359 Lagoon Lagoon Merimbula Lake 20.444 25.3 3B WDE O O 37.90 4.989 Lake Lake Lake Pambula River 1.935 13.6 3C WDE O O 296.46 4.356 River Barrier rive Curalo Lagoon 1.454 132.0 4C WDE I C 28.22 0.714 Lagoon Lagoon Lagoon Shadrachs Creek 0.008 15.5 4C I C 13.23 0.009 Lagoon C Case 0.714 Lagoon Lagoon C Case 0.714 Lagoon C Case 0.714 Lagoon Cagoon Cree 0.0					WDE	1					Lake Creek
Pambula River 1.935 13.6 3C WDE O O 296.46 4.356 River Barrier rive Curalo Lagoon 1.454 132.0 4C WDE I C 28.22 0.714 Lagoon Lagoon Creek Shadrachs Creek 0.008 15.5 4C I C 13.23 0.009 Lagoon Creek Nullica River 0.247 32.8 4C WDE I C 54.77 0.316 Lagoon Lagoon Creek Boydtown Creek 0.057 20.8 4C I C 54.77 0.316 Lagoon Creek Towamba River 0.116 8.2 3D WDE O O 1026.17 1.914 River Barrier rive Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Creek Saltwater Creek (Eden) 0.070 38.2 4C I C 17.41 </td <td>Back Lagoon</td> <td></td> <td>56.9</td> <td>4C</td> <td></td> <td></td> <td>С</td> <td>31.35</td> <td>0.359</td> <td></td> <td>Lagoon</td>	Back Lagoon		56.9	4C			С	31.35	0.359		Lagoon
Curalo Lagoon 1.454 132.0 4C WDE I C 28.22 0.714 Lagoon Lagoon Shadrachs Creek 0.008 15.5 4C I C 13.23 0.009 Lagoon Creeo Nullica River 0.247 32.8 4C WDE I C 53.77 0.316 Lagoon Lagoon Lagoon Boydtown Creek 0.057 20.8 4C I C 3.86 0.016 Lagoon Creed Towamba River 0.116 8.2 3D WDE O 0 1026.17 1.914 River Barrier rive Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Creee 6.45 0.053 Lagoon Creee Barrier rive Barrier rive 6.45 0.053 Lagoon Creee Barrier rive Barrier rive											Lake
Nullica River 0.247 32.8 4C WDE I C 54.77 0.316 Lagoon Lagoon Boydtown Creek 0.057 20.8 4C I C 3.86 0.016 Lagoon Creat Towamba River 0.116 8.2 3D WDE O 0 1026.17 1.914 River Barrier rive Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Lagoon Lagoon Twofold Bay 17.441 37.1 1 EMB O O 11.01 30.730 Lake Ba Saltwater Creek (Eden) 0.070 38.2 4C I C 17.19 0.056 Lagoon Creee Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creee Wonboyn River 2.154 66.4 3A WDE O 0 335.44 3.689 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td></t<>						0	0				
Nullica River 0.247 32.8 4C WDE I C 54.77 0.316 Lagoon Lagoon Boydtown Creek 0.057 20.8 4C I C 3.86 0.016 Lagoon Creat Towamba River 0.116 8.2 3D WDE O 0 1026.17 1.914 River Barrier rive Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Lagoon Lagoon Twofold Bay 17.441 37.1 1 EMB O O 11.01 30.730 Lake Ba Saltwater Creek (Eden) 0.070 38.2 4C I C 17.19 0.056 Lagoon Creee Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creee Wonboyn River 2.154 66.4 3A WDE O 0 335.44 3.689 <t< td=""><td></td><td></td><td></td><td>4C</td><td></td><td>ļ</td><td>č</td><td></td><td></td><td></td><td>Creek</td></t<>				4C		ļ	č				Creek
Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Lagoon Twofold Bay 17.441 37.1 1 EMB O O 11.01 30.730 Lake Ba Saltwater Creek (Eden) 0.070 38.2 4C I C 1.01 30.730 Lake Ba Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creee Wonboyn River 2.154 66.4 3A WDE O O 335.44 3.689 River Barrier rive Merrica River 0.050 27.0 4B CL I C 60.54 0.123 Lagoon Creee Madgee River 0.076 39.4 4D I C 58.79 0.192 Lagoon Creee	Nullica River	0.247	32.8	4C	WDE	ļ	С	54.77	0.316	Lagoon	Lagoon
Fisheries Creek 0.182 72.9 4D I C 6.45 0.053 Lagoon Lagoon Twofold Bay 17.441 37.1 1 EMB O O 11.01 30.730 Lake Ba Saltwater Creek (Eden) 0.070 38.2 4C I C 1.01 30.730 Lake Ba Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creek Wonboyn River 2.154 66.4 3A WDE O O 335.44 3.689 River Barrier rive Merrica River 0.050 27.0 4B CL I C 60.54 0.123 Lagoon Creek Nadgee River 0.076 39.4 4D I C 57.9 0.192 Lagoon Creek			20.8 8 2		WDF		0				Creek Barrier river
Twofold Bay 17.441 37.1 1 EMB O O 11.01 30.730 Lake Ba Saltwater Creek (Eden) 0.070 38.2 4C I C 17.19 0.056 Lagoon Creee Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creee Wonboyn River 2.154 66.4 3A WDE O O 335.44 3.689 River Barrier rive Merrica River 0.050 27.0 4B CL I C 60.54 0.123 Lagoon Creee Nadgee River 0.076 39.4 4D I C 57.9 0.192 Lagoon Creee					WDL	1	С				Lagoon
Woodburn Creek 0.082 20.0 4C I C 13.51 0.050 Lagoon Creek Wonboyn River 2.154 66.4 3A WDE O O 335.44 3.689 River Barrier rive Merrica River 0.050 27.0 4B L I C 61.54 0.123 Lagoon Creek Nadgee River 0.076 39.4 4D I C 58.79 0.192 Lagoon Creek	Twofold Bay	17.441	37.1	1	EMB		0	11.01	30.730	Lake	Bay
Wonboyn River 2.154 66.4 3A WDE O O 335.44 3.689 River Barrier rive Merrica River 0.050 27.0 4B L I C 60.54 0.123 Lagoon Creel Table Creek 0.082 43.4 4B I C 17.29 0.056 Lagoon Creel Nadgee River 0.076 39.4 4D I C 58.79 0.192 Lagoon Creel							C				Creek
Merrica River 0.050 27.0 4B CL I C 60.54 0.123 Lagoon Creel Table Creek 0.082 43.4 4B I C 17.29 0.056 Lagoon Creel Nadgee River 0.076 39.4 4D I C 58.79 0.192 Lagoon Creel					WDE		ŏ				Barrier river
I able Creek 0.082 43.4 4B I C 17.29 0.056 Lagoon Cree Nadgee River 0.076 39.4 4D I C 58.79 0.192 Lagoon Cree Nadgee River 8.340 714.3 4C CI I C 137.0 1204 Lake Lake Lake I I 130.0 1204 Lake Lake Lake I 130.0 130.0 130.0 I I 130.0 130.0 130.0 I I 130.0 I 130.0 I 130.0 I 130.0 I I 130.0 I 130.0 I 130.0 I I 130.0 I 130.0 I 130.0 I I 130.0 I 130.0 I I 130.0 I I I I I I 130.0 I I I I I I I I	Merrica River	0.050	27.0	4B		Ĩ		60.54	0.123	Lagoon	Creek
Nadoge lake 8,340 714.3 4C Cl I C 13.70 1.204 Lake Lake							C				Creek
	Nadgee Lake	8.340	39.4 714.3	4D 4C	CL		C	58.79 13.70	1.204	Lagoon	Lake

LEGEND

Main class	Subclass		
Lake	Вау	Drowned valley	Lake
River	Barrier river		
Lagoon	Creek	Lagoon	

T = trained, I = intermittent, O = open, C = closed

O * = assumed predominantly open irrespective of Roy et al. (2001) entrance condition

Estuary area excludes saltmarsh

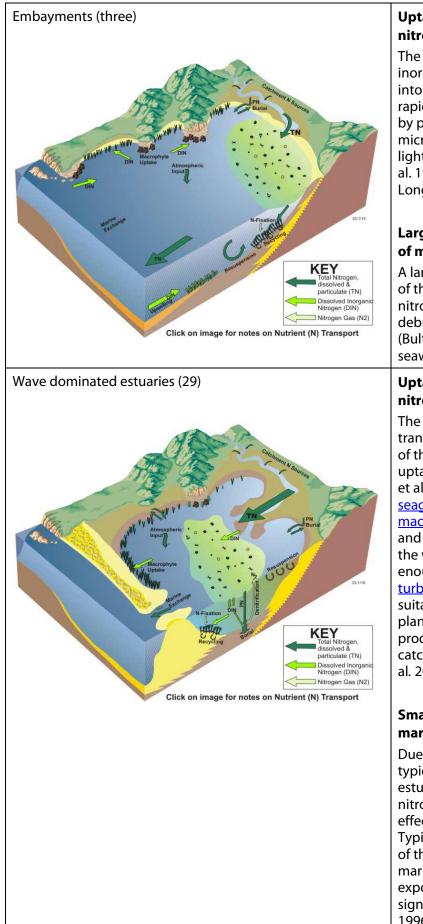

5.3.4 Validation of the conceptual models

Table 8 shows the number of Roy et al. (2001) and Heap et al. (2001) classes represented in each of the lake, river and lagoon chlorophyll response classes. Of the 130 estuaries classified by Heap et al. (2001), the main classes represented are wave dominated estuaries and coastal lagoons, followed by wave dominated deltas and embayments. Conceptual models of nutrient dynamics for each of these four classes are shown in Figure 18 (Ryan et al. 2003).

Classific	ation system	Lake	River	Lagoon
Roy	Bays 1	6		
	Drowned river valleys 2A, 2B, 2C	9	4	
	Immature barrier lake estuaries 3A, 3B	12	4	1
	Mature barrier river estuaries 3C, 3D	2	32	
	Large ICOLL lakes 4A	3		1
	Creek and lagoon ICOLLs 4B	7		21
	Small creek and lagoon ICOLLs 4C, 4D	3	3	72
Heap	Embayments	3		
	Tide dominated deltas		1	
	Tidal creeks		2	
	Wave dominated estuaries	29	16	20
	Wave dominated deltas		17	1
	Coastal lagoons	6	6	29

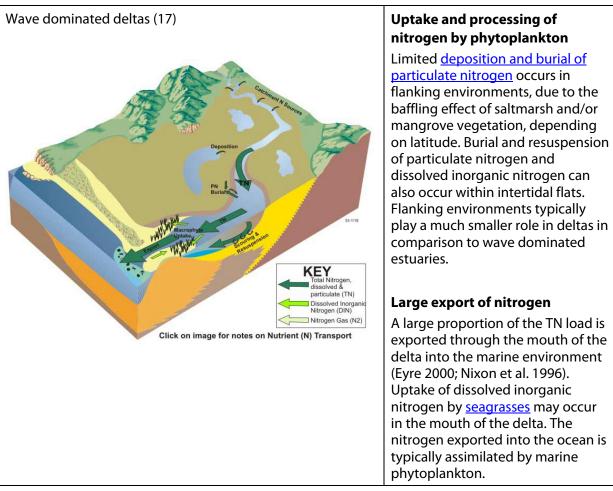
Table 8: Comparison of classification systems

Dominant geomorphic type in Roy et al. (2001) and Heap et al. (2001)

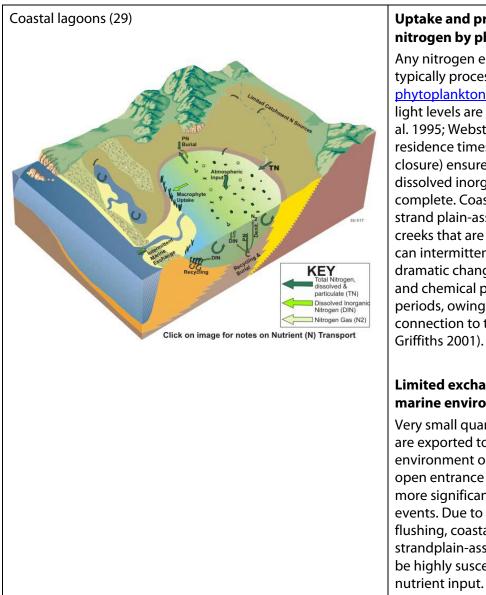
Uptake and processing of nitrogen by phytoplankton

The catchment-derived dissolved inorganic nitrogen is transported into the embayment, where it is rapidly processed and assimilated by phytoplankton and benthic microalgae, if <u>temperature</u> and light levels are suitable (Elosegui et al. 1987; Nicholson et al. 1999; Longmore et al. 1999).

Large tidal prism and exchange of marine waters


A large tidal prism results in much of the dissolved and particulate nitrogen, including phytoplankton debris, being transported offshore (Bulthuis et al. 1984) and diluted by seawater.

Uptake and processing of nitrogen by phytoplankton


The dissolved inorganic nitrogen is transported into the central basin of the estuary, with biological uptake by phytoplankton (Gaughan et al.1995; Webster & Ford 1998), seagrasses, benthic microalgae and macroalgae (Webster et al. 2002), and macrophytes occurring along the way, if residence times are long enough, and if temperature, turbidity, and light levels are suitable. The balance between planktonic and benthic primary productivity may depend on catchment nitrogen loads (Eyre et al. 2002).

Small export of nitrogen to the marine environment

Due to the long residence time typical of wave dominated estuaries, most catchment derived nitrogen is processed and effectively trapped by the estuary. Typically, only very small quantities of the TN load are exported to the marine environment; however, export is much larger during significant flood events (Nixon et al. 1996).

Uptake and processing of nitrogen by phytoplankton

Uptake and processing of nitrogen by phytoplankton

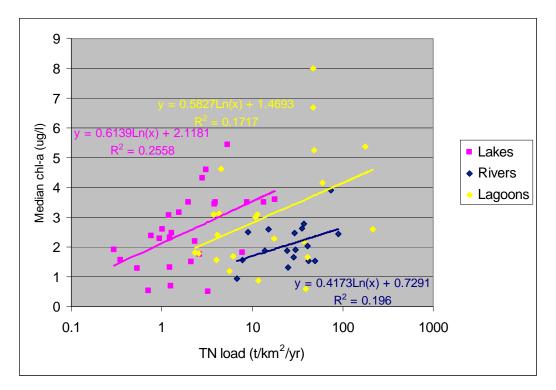
Any nitrogen entering the lagoon is typically processed mostly by phytoplankton, if temperature and light levels are suitable (Gaughan et al. 1995; Webster et al. 1998). Long residence times (during barrier closure) ensure that processing of dissolved inorganic nitrogen is complete. Coastal lagoons and strand plain-associated coastal creeks that are open to the ocean can intermittently undergo dramatic changes in their physical and chemical parameters over short periods, owing to their dynamic connection to the sea (Pollard 1994;

Limited exchange with the marine environment

Very small quantities of the TN load are exported to the marine environment only during periods of open entrance conditions. Export is more significant during flood events. Due to limited marine flushing, coastal lagoons and strandplain-associated creeks may be highly susceptible to increased

Figure 18: Conceptual models based on energy and geomorphology (Heap et al. 2001)

To validate the conceptual models, available data on chlorophyll a concentrations and modelled diffuse source nutrient loading were analysed for potential relationships. Chlorophyll a data were available for 82 estuaries (see Chapter 6) while nutrient loads had been modelled for all 184 estuaries (see Chapter 9). Of the 82 estuaries with data, 16 were excluded from the analysis for the following reasons:


- Tallow Creek: continual press of a large point source load from a sewage treatment works flowing into a small estuary
- Evans River, Tomaga Tiver, Candlagan Creek, Bega River and Towamba River: limited number of samples across all three river salinity zones (12, 12, 11, 12 and 6 respectively)
- Parramatta River: immediately upstream of Port Jackson with very limited oceanic influence
- Cooks River: >99 per cent of samples taken in the upper river only

- Stanwell, Flanagans, Slacky, Munna Munnora and Mollymook Creeks: very small surface areas of <0.01 km² making them subject to wide swings in water quality which, combined with the limited number of samples (15, 16, 16, 37 and six respectively), meant the sampling results were likely not representative of creek and lagoon systems
- Crooked River: tidal limit only 3.2 km upstream so oceanic water quality most of the time in comparison to other rivers
- Tilba Tilba and Nadgee Lakes: major algal blooms during sampling.

Medians were used for chlorophyll a, in preference to means, as the data used in the assessment originated from a number of custodians collecting samples at different frequencies, tidal stage and rainfall conditions. High variability in water quality, particularly during rainfall events, may skew results if uncorrected for climatic conditions. Separating chlorophyll a sampling results into ambient and event-based should be investigated in the future. In addition, further analysis should be conducted using chlorophyll a sampling results taken from the summer algal growth period. The 2CSalt hydrology model outputs of monthly flows would also allow finer scale temporal analysis of potential load-response relationships between nutrient loads and chlorophyll a. For each river class estuary, the average of median chlorophyll a values for each of three functional zones defined by salinity (see Section 6.1.3) was used to represent overall river chlorophyll a concentrations.

Four scaling factors for nutrient loads were assessed: estuary area (including seagrass and mangrove but excluding saltmarsh or at Mean High Water level of about 0.6 m AHD – see Section 4.1), estuary volume (at 0.6 m AHD), residence time and a Vollenweider flushing term. The residence time T_w recognises the role of flushing in reducing the effect of nutrient loading and is applied linearly to the volume loading. The Vollenweider flushing term recognises the reduced role of flushing in systems with very long residence times and the increasing role of burial in sediments and denitrification in removing nutrient loading. The Vollenweider term is expressed as $(1+T_w)^{\frac{1}{2}}$ where T_w is the residence time and is applied to the denominator of the residence time loading. Accordingly, allowable loads increase with application of the Vollenweider term (Costa et al. 1999).

The four scaling factors were applied to the modelled Total Nitrogen (TN) diffuse source loading in recognition of the role of nitrogen in limiting productivity in estuarine systems (reviewed in Dettmann 2001). Of the four scaling factors, areal loading produced the best correlations as shown in Figure 19.

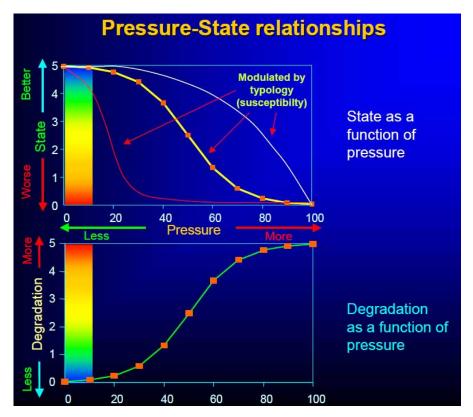
Figure 19: Comparison of nutrient areal loading and chlorophyll response

A number of observations can be made from this plot:

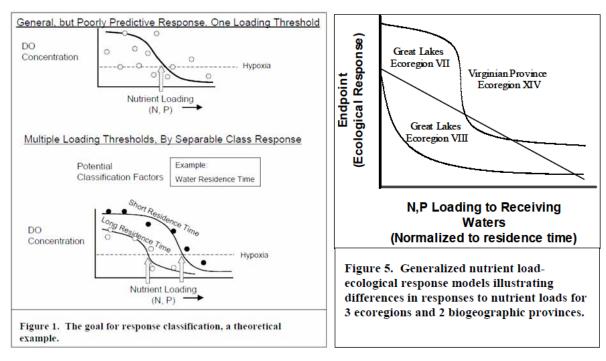
- Chlorophyll a concentrations generally increase with rising TN area loads although the correlations are relatively weak across all estuary types
- Rivers generally have higher areal loading than lakes, bays and drowned river valleys as their evolutionary history has been one of infilling of paleo-valleys with sediment derived from catchment erosion and hence higher areal loadings
- Rivers, lagoons and creeks have loading rates of the same order reflecting similar patterns of infilling and geomorphological development
- Chlorophyll a levels are generally lower for rivers than lakes, bays and drowned river valleys in response to high flushing rates and poorer light regimes limiting the ability of phytoplankton to develop and maintain their populations. Lakes and bays have stiller environments more conducive to light conditions suitable for phytoplankton growth and a greater role for benthic processes in recycling nutrients back to the water column
- Lakes, bays and drowned river valleys have better correlations than rivers, lagoons and creeks
- Rivers can display large variability in algal response during and immediately after rainfall but flushing restores conditions back to ambient relatively quickly which is when sampling usually occurs. However the correlation is only marginally better than for lagoons and creeks
- Lakes and bays have lower variability due to their very high dilution ratios and hence buffering capacity. The signal to noise ratio is therefore higher
- Lagoons and creeks are more problematic because of the high variability in entrance conditions, dilution capacity, flushing times and hence water quality response and ecological processes. Sampling is conducted irrespective of entrance condition which is then reflected in the high variance in chlorophyll a values evident from the statistical analysis. The correlation for

lagoons and creeks is very poor and warrants further investigation of the variables controlling water quality response

• The load-response relationships shown in Figure 19 were based on modelled diffuse source loads of TN exported from the estuary catchment. Adding the loads from licensed sewage discharge loads (see Sections 9.9 and 9.10) to the modelled diffuse source loads to give a total nutrient areal loading marginally improved the correlation for lagoons and creeks (R² = 0.1882) but had negligible change for lakes (R² = 0.2537) and rivers (R² = 0.1975). This factor may become more significant in water quality sampling results from the summer tourist season when discharge loads tend to rise. The relationship of summer chlorophyll a concentrations to nutrient loading should be further investigated.


By way of comparison with the proposed classification for NSW estuaries, Scavia & Liu (2009) used a simple nutrient-driven phytoplankton model to assist classifying estuaries according to their susceptibility to nutrients. The model performed well for predicting estimates of measured chlorophyll a and for primary production, grazing and sinking losses consistent with the literature. They suggest that estuaries with a ratio of annual inflow to estuary volume (Q/V) greater than 2.0 per year are less susceptible to nutrient loads and those between 0.3 and 2.0 per year are moderately susceptible.

Allowing for the dilution factor adopted in the chlorophyll response classification system using 10 per cent of annual inflow and being the inverse of Q/V, the methodology of Scavia & Liu (2009) suggests that estuaries with a dilution factor of less than 5 are less susceptible and between 5 and 33 are moderately susceptible. The boundary value of 5 is of the same order as the dilution factor of 3 (Figure 14) separating bays, drowned river valleys and lakes which have higher median chlorophyll a values (Figure 19) from rivers and creeks which tend to have lower chlorophyll values due to higher flushing rates. Scavia & Liu (2009) intended their simple model to be a first-order screening tool for estuarine susceptibility classification. Naturally higher phytoplankton populations could suggest that such systems are closer to an ecological threshold but susceptibility is also governed by other factors not accounted for in these models including flushing and entrance condition.


The preliminary classification of NSW estuaries into lakes, rivers and lagoons for the MER program was subsequently used to stratify sampling designs, set reference conditions for each class of estuary, identify trigger values for a management response, establish scoring intervals for classes and predict which systems are at risk of degradation in the future.

5.3.5 Functional classification

The response-based or functional classification scheme proposed for NSW estuaries is very similar with conceptualisations of load-response or pressure-state models being developed by the US EPA and the National Oceanic and Atmospheric Administration. Response can be modulated or filtered by physical variables such as typology, residence time or ecoregion. Three generalised examples are shown in Figure 20 (Bricker et al. 2007; Latimer & Kelly 2003). The intent behind each model is to incorporate any factors into the classification scheme which fundamentally alter response. Biological or ecological thresholds are then sought for each class of estuary and loading limits defined by the predictive model for each class.

Source: Bricker et al. 2007

Source: Latimer & Kelly 2003

Figure 20: Generalised stressor-response models

5.4 Macrophyte classification

Heap et al. (2001) mapped geomorphic and sedimentary facies for 405 estuaries around Australia. The eight facies mapped were barrier and back barrier, central basin, fluvial bayhead delta, flood and ebb tide delta, intertidal flat, mangrove, saltflat/saltmarsh and tidal sand banks.

Cluster analysis identified two main groups in the data:

- Tide dominated Group 1 characterised by an association of saltmarsh, mangrove, tidal sand banks, intertidal flats and flood/ebb-tide delta
- Wave dominated Group 2 characterised by an association of fluvial bayhead delta, central basin and barrier/back-barrier.

There was also a close association between saltmarsh and mangrove which was not unexpected since the probability analysis had indicated they both were likely to occur in all six subclasses of estuary.

The probability analysis and the cluster analysis demonstrated that tide dominated subclasses and wave dominated subclasses each have diagnostic facies suites. The dominant facies in each subclass were as follows:

- The central basin is the dominant facies in wave dominated estuaries
- Mangroves and channels are the dominant facies in wave dominated deltas
- Intertidal flats, barrier/back barriers and channels are the dominant facies in strandplains
- Mangroves, saltmarsh and channels are the dominant facies in tide dominated estuaries
- Mangroves are the dominant facies in tide dominated deltas
- Mangroves and saltmarsh are the dominant facies in tidal creeks.

The strong association between facies and subclass was used to develop an index to assess the degree of deviation from an ideal or normal state. Heap et al. (2001) assumed that the greatest habitat integrity occurs in a system that has an idealised facies distribution. A Deviation Index was used to count or score the absence of facies that should be associated with a particular subclass and/or the presence of facies not generally associated with that subclass. A score of 0 to 2 indicated that deviations were mostly due to natural variations based on regional characteristics in the nature of facies. A deviation score of 3 showed deviations due to either natural or anthropogenic activities while >3 was flagged for further investigation into the reasons (natural or otherwise) for the high deviation score. The maximum Deviation Index score was 8, representing the total number of facies mapped and would indicate very poor habitat integrity.

A significant proportion of the Deviation Index scores for NSW estuaries were 3 or greater. However, NSW is characterised by a wave dominated coastline in contrast to the northern regions of Australia that are tide dominated as shown in Figure 21. Specifically, many of the wave dominated systems in NSW are intermittently open coastal lakes, lagoons and creeks which inhibit the growth of mangroves. The absence of mangroves was one of the main factors in driving up the Deviation Index scores for NSW. In addition, regional variability in climatic and estuary biophysical characteristics is high and is not appropriately accounted for in the six subclasses if they are to be used for assessing mangrove and saltmarsh extent. Exploratory analysis of the key physical and environmental drivers of saltmarsh and mangrove extent and distribution, together with seagrass extent and distribution, is required using the extensive database developed for the MER program. Refinement of the Deviation Index approach based on the wave, tide and river power classification of Heap et al. (2001) may eventuate, or alternatively a response-based system of classification along similar lines to the chlorophyll response model.

For the purposes of the MER program, no *a priori* estuary classification for macrophytes was attempted. Rather, all estuaries in NSW were examined and, if any macrophytes were found, their spatial extent was mapped for comparison of the extent of change between a recent survey and one carried out over 30 years ago (West et al. 1985).

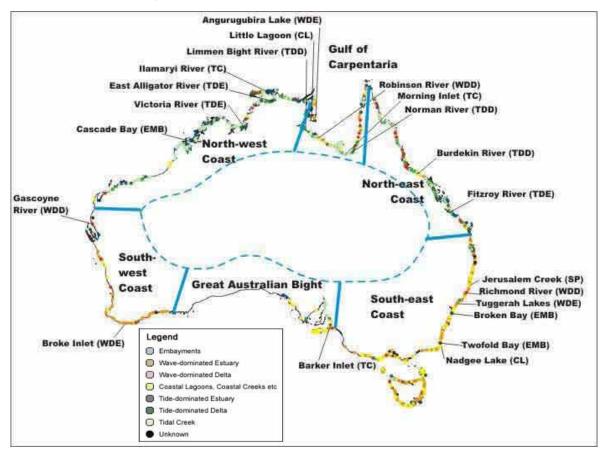


Figure 21: Geomorphic classification of Australian estuaries (Heap et al. 2001)

5.5 Fish assemblage classification

Pease (1999) used estuarine commercial fishery data and eight physical and environmental attributes to define three bioregions within NSW. The physical and environmental attributes analysed were latitude, geomorphological type, catchment area, water area, entrance depth, entrance width, average annual rainfall and seagrass area. Multivariate analysis indicated that NSW estuaries could be grouped into three latitudinal regions with the primary factor being estuary size. Most of the largest estuaries, which were typically drowned river valleys and large barrier lake estuaries, are found in the central region. Most of the smallest estuaries, mainly coastal lagoons, are located in the southern end of the coastline; many of the medium to large estuaries are in the northern area dominated by barrier rivers.

Classification by fishing method, and by richness and catch by taxa also found correlations with estuary size defined by water area. The bioregional pattern for estuarine fisheries established by Pease (1999) is consistent with the findings of other bioregional studies and was adopted for the design and assessment of estuarine fish assemblages (see Figure 22). The north bioregion aligns well with the Northern Rivers CMA region, similarly for the south bioregion and Southern Rivers CMA region. The central bioregion incorporates the other three coastal CMA regions.

In an earlier study, biological sources of variation in fisheries communities were examined in a report to the Fisheries Research Development Corporation (Cappo et al. 1998). In the studies reviewed, the distribution of estuarine faunas was found to be structured by:

- distance from the mouth
- extent of tidal intrusion
- salinity and episodic floods
- position of the halocline (salt wedge)
- depth of the channel
- position and nature of vegetated habitats

Sufficient data were not available to test these variables within NSW estuaries. However, as for macrophytes, a substantial database of physical, environmental and ecological attributes has been established through the MER program and this could be analysed to identify possible drivers of spatial patterns in estuarine fish assemblages.

Research is currently ongoing to examine the spatial scales of variability within the estuarine fish communities of large coastal lakes in NSW with a view to determining the optimum sampling strategy for future quantification of abundance patterns (C Gray pers. comm. 2009).

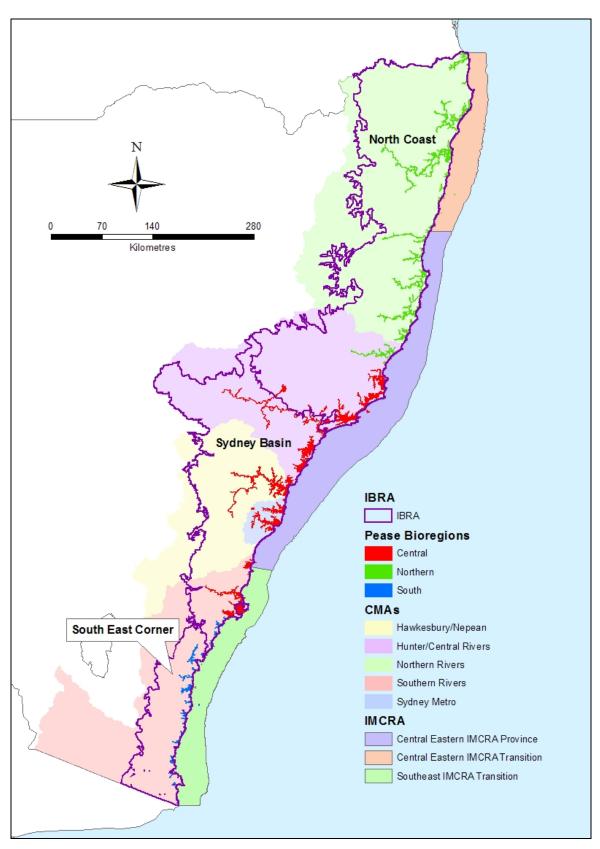


Figure 22: The bioregions used for fish sampling (after Pease 1999)

5.6 Future direction for classification

The classification systems adopted across indicator groups comprised both non-geographical and bioregionalisation approaches. Further exploratory analysis of existing databases augmented by ongoing collection of new data will potentially result in refinement of existing classification systems or development of new systems particularly for macrophytes. Statistical approaches that could be explored for classification include statistical-cluster analysis and/or a statistical-Bayesian classification and regression tree (B-CART) that simultaneously optimises estuary class membership and the fitting of variables to load-response models (Gilbert et al. 2010).

Subsequent to the release of the SOC 2010 reports, work on the chlorophyll response classification has indicated a minor change to the classification criteria may be appropriate. Examination of the types of systems captured by the river class shows that six of the seven estuaries classified by Roy et al. (2001) as 'type 3C mature barrier river estuaries' are included. The exception is the permanently open type 3C Wapengo Lagoon which could also be captured by the river class through an increase in the dilution factor from 3.0 to 3.5 that separates the lake from the river class. Wapengo Lagoon has a dilution factor of 3.35 compared with the system with the next highest dilution factor which is Durras Lake with 3.51. Figure 19 has been replotted in Figure 23 reclassifying Wapengo Lagoon as a river. The R-squared values for lakes and rivers have both increased significantly from 0.256 up to 0.325 and from 0.196 up to 0.350 respectively. Further improvements are likely as more data and analysis become available.

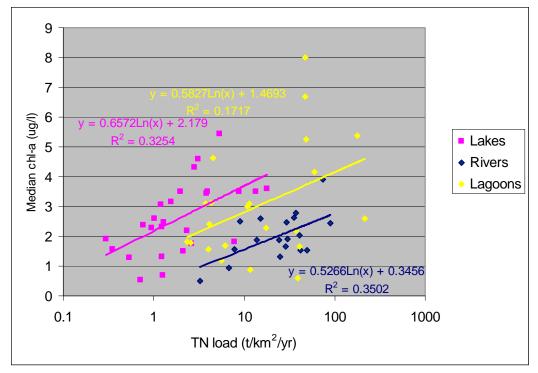


Figure 23: Load-response relationships with amended chlorophyll classification system

6. Condition data

The condition indicators proposed by the NRC are a mix of attributes of structural elements, ecological processes and community composition of estuarine ecosystems. They represent biological endpoints in preference to the drivers, pressures or stressors controlling condition.

Considerable work on indicators has been undertaken at the national level by ICAG for the Marine and Coastal Committee (MACC). ICAG engaged the Cooperative Research Centre (CRC) for Coastal Zone, Estuary and Waterway Management to develop a set of national indicators under the National Natural Resource Monitoring and Evaluation Framework (NM&EF). An indicator list was developed by the CRC (Scheltinga et al. 2004) as shown in Table 9 together with the indicators from the NRC (NRC 2005) and the Estuaries MER program.

The alignment between the indicators proposed for use and those of the NRC is relatively good. Emergent macrophytes and freshwater inflow have been dropped from the NRC measures while ephemeral macroalgae and water clarity measured as turbidity have been added. However, changes in freshwater inflow were modelled and reported as part of a suite of associated pressure indicators (see Chapter 9). The indicators initially used in the NSW Estuaries MER program are a subset of the larger suite at the national level.

NM&EF heading	National indicators (Scheltinga et al. 2004)	NRC indicators (NRC 2005)	NSW Estuaries MER program				
Estuarine, coastal and marine habitat extent and distribution	Extent/distribution of key habitat types	Extent of mangroves, saltmarsh, seagrass and macrophytes	Extent of mangroves, saltmarsh and seagrass				
	Extent/distribution of subtidal macroalgae		Ephemeral macroalgae blooms including seagrass epiphytes				
Estuarine, coastal and	Biological condition						
marine habitat condition	Algal blooms		Ephemeral macroalgae blooms including seagrass epiphytes				
	Animal disease/lesions						
	Animal kills						
	Animal or plant species abundance	Fish assemblages	Fish assemblages				
	Animals killed or injured by litter (entanglement, starvation, suffocation)						

 Table 9:
 Comparison of NSW indicators with national indicators

NM&EF heading	National indicators (Scheltinga et al. 2004)	NRC indicators (NRC 2005)	NSW Estuaries MER program
	Benthic microalgae biomass (in intertidal sand/mudflat communities)		
	Biomass, or number per unit area, of epiphytes (in seagrass or mangrove communities)		Ephemeral macroalgae blooms including seagrass epiphytes
	Biomass, or number per unit area, of macroalgae (in rocky shore, rocky reef or coral reef communities)		
	Chlorophyll a	Chlorophyll a	Pelagic chlorophyll a
	Coral bleaching		
	Death of marine mammals, endangered sharks and reptiles caused by boat strike, shark nets or drum lines)		
	Mass mortality events		
	Occurrence of imposex		
	Pest species (number, density, distribution)		Caulerpa taxifolia only
	Seagrass: depth range	Extent of seagrass	Extent of seagrass
	Vertebrates impacted by human activities		Three species of shorebirds are monitored by OEH under the Fox Threat Abatement Plan and could be reported
	Physical/chemical condition	•	
	Dissolved oxygen		Sampled concurrently with chlorophyll a
	Estuary mouth opening/closing		Level of estuary mouth artificial opening
	Nutrients		
	рН		
	Presence/extent of litter		

NM&EF heading	National indicators (Scheltinga et al. 2004)	NRC indicators (NRC 2005)	NSW Estuaries MER program
	Salinity		Sampled concurrently with chlorophyll a
	Sedimentation/erosion rates		
	Shoreline position		
	Temperature		Sampled concurrently with chlorophyll a
	Targeted pathogen counts		
	Total nutrients in the sediments WITH dissolved nutrients in the sediments		
	Total nutrients in the water column WITH dissolved nutrients in the water column		
	Toxicants in biota		
	Toxicants in the sediment		
	Turbidity/water clarity		Turbidity
	Water/current patterns		
	Water soluble toxicants in the water column		
	Water temperature		
	Other		
		Freshwater inflow	Limited existing gauges but 2CSalt hydrology models developed for all catchments
		Stress biomarkers	

6.1 Chlorophyll a and turbidity

6.1.1 Data sources

Data on resource condition indicators were sought from as wide a range of potential custodians as possible. Parties approached for each group of indicators are listed below:

• The former NSW Department of Environment and Climate Change, NSW Department of Water and Energy and NSW Department of Primary Industries

- All local councils along the NSW coastline including the LGAs of Tweed, Byron, Ballina, Richmond River, Clarence Valley, Bellingen, Nambucca, Kempsey, Port Macquarie-Hastings, Greater Taree, Great Lakes, Port Stephens, Newcastle, Lake Macquarie, Wyong, Gosford, Hornsby, Pittwater, Warringah, Manly, North Sydney, Lane Cove, Parramatta, Rockdale, Botany Bay, Sutherland, Wollongong, Shellharbour, Kiama, Shoalhaven, Eurobodalla and Bega Valley
- Sydney Water Corporation
- Wollongong, Newcastle and Southern Cross Universities
- Lake Illawarra Authority
- Pacific Power
- J.H. & E.S. Laxton Environmental Consultants P/L.

A questionnaire on water parameter sampling was issued to most custodians (Table 10).

Table 10: Standard information requested from custodians of water data

1.	What estuaries and waterways do you sample?					
2.	How many/where are the locations within estuaries that you sample?					
	Are there maps, GPS points available?					
3.	What is the frequency of sampling?					
	Is this consistent among estuaries?					
4.	What parameters are collected at all sites?					
5.	How are the data collected and where are the samples analysed?					
6.	Are there any quality assurance and quality control protocols and procedures in place? (If water quality collected by lab, then it's usually just the lab's protocols).					
7.	Reporting and management:					
	a) Is the reporting State of the Environment (SOE)?					
	b) Have you developed your own water quality index?					
	c) Do you use ANZECC guidelines?					
1						

A summary of the sample counts is shown in Appendix 10. Most custodians forwarded their data on request while a very small number requested data licence agreements to be put in place before supplying their data. Not all custodians, particularly councils, were able to supply their data for a variety of reasons. Significant additional data are known to exist and should be accessed for the next round of SOC reporting.

Data were received from councils for 29 estuaries. There is large variability between LGAs in the number of estuaries within the LGA, the proportion of estuaries sampled, the parameters sampled, the frequency of sampling and the usefulness of the data for resource condition assessment. Of the 32 coastal councils, 21 are gathering data that can be used for assessment and reporting of estuary health.

6.1.2 Data quality

The quality control steps undertaken for each dataset are outlined as follows:

- Location of sampling point data upstream of the upper tidal limits of estuaries were discarded
- Availability of metadata if no metadata were available, the data were discarded
- Age of data data older than 1950 were discarded due to uncertainty in analytical techniques
- Data entry errors data for each estuary were individually checked for obvious errors arising during data entry eg conversions to correct units of measurements
- Outliers data for each estuary were individually checked for obvious outliers eg negative values of temperature during the summer months, or extraordinarily high turbidity values (in the 10,000s). Where chlorophyll a values exceeded 200 µg/l, a check was made on the location of sampling. If sampling was near, for example, a sewage overflow, the data were retained in the database but were not used for the purposes of assessing estuary health. Including sample results from the plume of a specific point source would bias the assessment of ambient conditions.

Once quality controlled, the remaining data were stored in the Keeping Estuarine Values Integrated for NSW (KEVIN) water quality database based on an Excel spreadsheet and maintained by OEH. A more permanent database solution is being explored using SQL Server into which the KEVIN data may be migrated. Some data were not entered into the KEVIN database as it has not been publicly released; this included data from the University of Wollongong on Shoalhaven River, Clyde River, Moruya River, Burrill Lake, Coila Lake and Lake Illawarra and from Wollongong City Council on Stanwell, Flanagans, Slacky and Towradgi Creeks and Bellambi Lake. The data are stored separately for later inclusion in the KEVIN database but have been analysed for the purposes of this report.

The SOC reports also required an assessment of the level of confidence in each dataset. This is a significant issue for water quality data which have been acquired from a number of custodians. Criteria were developed for assessing the quality and reliability of the data and scores in a range from 1 to 3 assigned to each dataset as shown in Table 11. The data quality score for each estuary is shown in Table 12. Note for turbidity, the data quality scores were identical for each estuary as only data from the Estuaries MER program have been retained in the database. Myall River has been the subject of a Commonwealth-funded Comprehensive Coastal Initiative project and has been assigned a higher turbidity data quality score.

Score	1 (Poor)	2 (Fair)	3 (Good)
Analysis	Laboratory/field analysis without quality system in place.	Laboratory has internal quality system (not National Association of Testing Authorities (NATA) registered), and/or field analysis, instrument calibration is unknown.	Laboratory NATA registered or other highly developed Quality Assurance/Quality Control (QA/QC) procedures including inter-laboratory calibrations or other external processes (such as government and research agency labs), and/or field analysis on appropriately calibrated instruments.
Field sampling	Collectors with minimal experience with no training (ie, community groups), or no QA/QC documented procedures.	Suitably qualified collectors, who have some degree of professional training or are working under professional supervision, less than optimal QA/QC.	Professionally trained organisations / individuals (eg government and/or research agencies), appropriate QA/QC (eg field and transport procedures documented).
Sampling replication	One replicate only.		More than one replicate.
Spatial coverage	Not representative (eg single site on edge of waterway).	Sampling representative of limited parts of system (eg two sites in a central basin, upstream and downstream of outfall etc).	Variability assessed and accounted for in sample design, sampling representative of system (eg bays, basins and longitudinal river sections).
Temporal coverage	Inconsistent data collection and data gaps.	Consistent collection at less than optimal scale (eg quarterly) >two years, or; Consistent data collection <two at<br="" years="">optimal scale (eg monthly).</two>	Variability assessed and consistent collection at optimal scale (eg monthly) for >two years.
Age of data	Data >10 years old.	Data 5–10 yrs old.	Data <five old.<="" td="" years=""></five>
Data source	Data from three or more programs.	Data from two programs.	Data from one program.

1–7 = Poor

Table 11: Criteria for assessing reliability of water quality data

Scoring: 15–21 = Good 8–14 = Fair

	Quality score for chlorophyll a									
Estuary (T) = estuary has turbidity data	2 Analysis	2 Field sampling	→ Sampling replication	spatial coverage	→ Temporal coverage	⇔ Age of data	Data source	Total quality score		
Brunswick River (T)				1			3	13		
Belongil Creek	2	2	1	3	2	3	3	16		
Tallow Creek	3	3	1	2	2	3	3	17		
Evans River (T)	3	3	1	1	1	3	3	15		
Sandon River (T)	3	3	1	1	1	3	3	15		
Hastings River (T)	2 2	2 2	1 1	2 2	2 2	3 3	3 3	15 15		
Manning River Khappinghat Creek (T)	2	2	1	2	2	3	3 3	16		
Wallis Lake (T)	3	3	2	2	3	3	2	19		
Smiths Lake	2	3	2	3	2	3	2	17		
Myall River	3	3	1	3	2	3	3	18		
Karuah River (T)	3	3	1	1	1	3	3	15		
Lake Macquarie	2	2	1	2	2	3	1	13		
Tuggerah Lake (T)	2	2	3	3	1	3	1	15		
Wamberal Lagoon (T)	3	3	1	2	1	3	3	16		
Avoca Lake (T)	2	3	1	2	1	3	2	14		
Hawkesbury River	2	2	1	1	1	3	3	13		
Narrabeen Lagoon	2	2	2	3	2	3	2	16		
Dee Why Lagoon	3	3	1	3	2	3	2	17		
Curl Curl Lagoon	3	3	1	3	2	3	2	17		
Manly Lagoon (T)	2	2	2	2	3	3	2	16		
Parramatta River (T)	2	2	1	2	2	3	2	14		
Port Jackson	2 2	2	2	2	2	3	3	16		
Cooks River	2	2 2	1 3	1 3	1 2	3 3	2 2	12 17		
Georges River (T) Botany Bay	2	2	3 1	3 1	2 1	3	2 3	17		
Wattamolla Creek (T)	3	3	1	3	3	3	2	18		
Towradgi Creek (T)	3	3	1	1	1	3	3	15		
Fairy Creek (T)	2	2	1	3	1	3	1	13		
Lake Illawarra (T)	2	2	1	3	2	3	2	15		
Minnamurra River (T)	2	2	1	1	3	3	2	14		
Spring Creek	2	2	1	1	1	3	3	13		
Munna Munnora Creek	2	2	1	1	2	3	3	14		
Werri Lagoon	2	2	1	2	2	3	3	15		
Crooked River	2	2	1	2	2	3	3	15		
Shoalhaven River (T)	3	3	1	1	1	3	3	15		
Burrill Lake (T)	3	3	1	3	1	3	3	17		
Termeil Lake (T)	3	3	1	2	1	3	3	16		
Durras Lake (T)	3	3	1	2	1	3	3	16		
Clyde River (T)	3	3	1	1	1	3	3	15		
Congo Creek (T)	3	3	1	2	1	3	3	16		
Coila Lake (T)	3	3	1	2	1	3	3	16		
Corunna Lake (T)	2 3	2 3	1 1	2 2	1 1	3 3	2 3	13 16		
Cuttagee Lake (T)	3			∠ core fo			5	10		
Myall River	3	3	1 1	3	2	3	3	18		
Other estuaries (26)	3	3	1	1	1	3	3	15		
Data quality		good			fair			poor		

Table 12: Data quality scores for KEVIN water quality data

6.1.3 Data analysis

Chlorophyll a and turbidity data were analysed for summary statistics on the three estuary classes of lakes, rivers and lagoons. Chlorophyll a data were available for 29 lakes, 24 rivers and 29 lagoon class estuaries and for turbidity, data were available for 18 lakes, 16 rivers and 18 lagoons.

Box plots were generated to visually display the median and inter-quartile range. The upper and lower ranges of the plots represent the 5th and 95th percentiles as shown in Figure 24, Figure 25 and Figure 26 for chlorophyll a for lakes, rivers and lagoons respectively. Likewise, Figure 27, Figure 28 and Figure 29 show the turbidity box plots.

For riverine estuaries, Ferguson et al. (2009 unpubl) defined three functional zones based on salinity ranges of 0 to <10, 10 to <25 and ≥25 ppt. A generalised model of ecological function in estuaries is emerging that recognises the importance of pelagic and benthic light climates as controls over biogeochemistry and ecological function of different zones along the estuarine gradient. High light (photic) sediments tend to tightly conserve or take up nutrients while subphotic sediments tend to be a significant source of nutrients to the water column. The interaction of bathymetry, light, hydrology and salinity results in longitudinal variation in water quality and phytoplankton production. Three zones can be characterised by the relative proportion of deep channel to shoals: channelised upper reaches, wider middle reaches with sub-tidal shoals and lower reaches with extensive inter-tidal shoals. These generally correspond with the three salinity ranges although the longitudinal location of the salinity ranges will vary dynamically with rainfall events. In generating the summary statistics and box plots, data for all three functional zones have been consolidated for analysis.

For riverine estuaries, sampling can often be unevenly distributed longitudinally along the river. Medians in each of the three functional zones were also calculated and averaged to show the potential bias in results. Statistical summaries of the data underpinning Figures 24 – 29 and the river functional zone averages are shown in Appendix 11 for chlorophyll a and Appendix 12 for turbidity.

For riverine estuaries, quality control was applied to the data prior to inclusion in the analysis as follows:

- Only chlorophyll a values with an associated salinity value were included
- For Sydney Water data, where salinity was not available, the locations of sampling sites as described in the annual technical reports on Sydney Water's website were used to ascribe a low, mid or upper river category to the data. Also any data with zero as an entry were excluded
- Any data collected with salinity below 2 ppt were excluded as a further check to ensure only
 estuarine sites were included and to reduce the bias introduced by multiple sampling
 programs targeting data collection to either ambient or wet weather conditions. For the MER
 program sampling conducted by OEH since 2007, all upper river sampling locations are known
 to be located within the estuary and therefore all data irrespective of salinity have been
 included in the analysis.

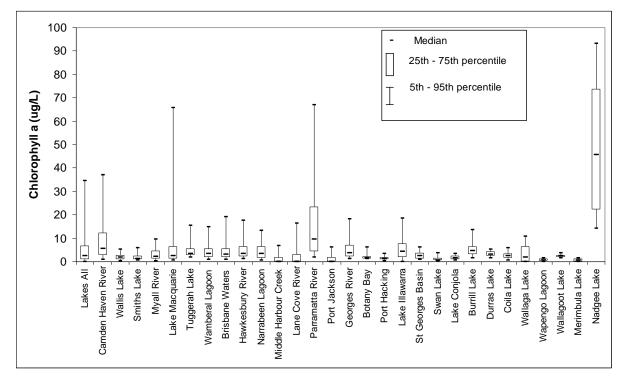


Figure 24: Box plot of chlorophyll a for lake class

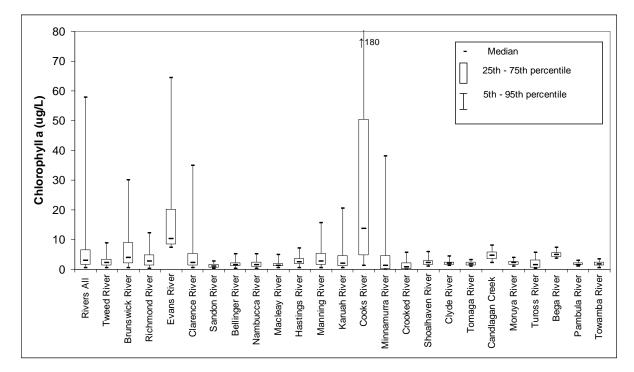


Figure 25: Box plot of chlorophyll a for river class

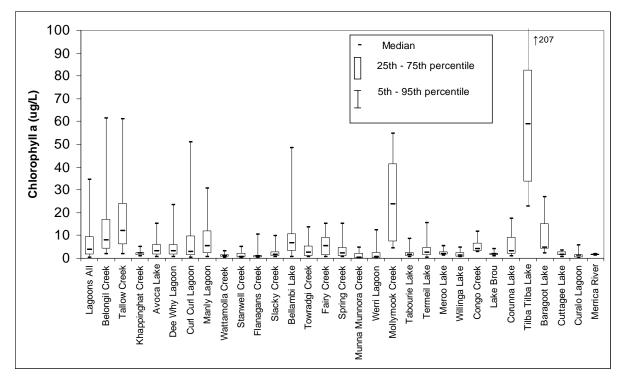


Figure 26: Box plot of chlorophyll a for lagoon class

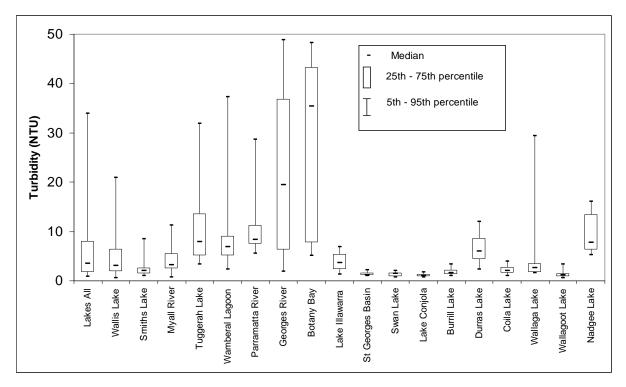


Figure 27: Box plot of turbidity for lake class

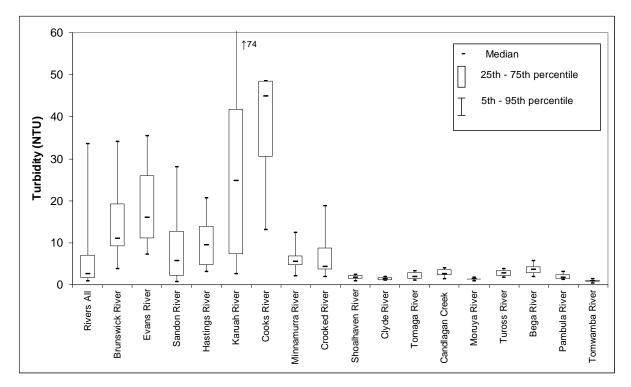


Figure 28: Box plot of turbidity for river class

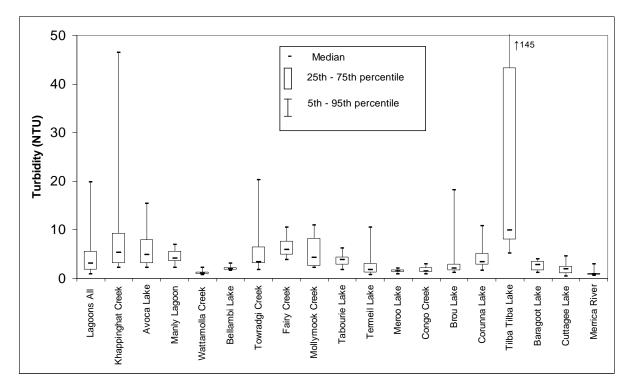


Figure 29: Box plot of turbidity for lagoon class

6.1.4 Sampling design

The design used assumes that short-term temporal variability in chlorophyll concentrations is not great and that samples from a single day are sufficient to represent a longer time period (1–2 weeks). This assumption is supported by Wellman (2008) who demonstrated that rates of phytoplankton production derived from sequential daily estimates for a fortnight were not significantly different from those derived from spatially replicated samples from a single day in that month. In addition, OEH data have indicated that pelagic chlorophyll concentrations differ between edge waters and central basin waters of coastal lakes (Scanes et al. 2007), (OEH unpubl), but not within these zones. This means that central basins can be adequately represented by a small number of replicate samples. In the sampling described below, those samples are integrated within (but not between) zones that are spatially large in comparison to the size of the estuary, thus providing greater confidence that the data do represent the entire estuary.

Power analysis can be used to assure that the sampling design has a reasonable chance of detecting a desired level of change. The sensitivity of a test will depend on the number of samples taken, the variability of the parameter being tested and the desired level of change to be detected. Variability can be estimated from available data or, if data are lacking, a subjective estimate may be necessary. The analysis should be revisited as more data become available and the sampling design refined.

The initial design, which used extracts from water samples to determine chlorophyll concentrations, was based on power analyses of two existing datasets (Scanes et al. 2007). Those datasets were monthly data (n = two replicates per site) for 18 coastal lakes, where means ranged from 15.2 to 0.6 and coefficient of variability (CV = standard deviation/mean) from 0.01 to 0.6, with an average CV of 0.17; and annual means for 10 lakes (n = 12 months; n per month = two) where means ranged from 6.3 to 0.9 and CV from 0.03 to 0.36, with an average CV of 0.21. The first dataset was composed predominantly of lake type estuaries (16 lakes, two rivers, one lagoon). It was not possible to do power analyses for each type of estuary, therefore only lakes were analysed. The second dataset was more varied with five lakes, three rivers and two lagoons. In this set, power was calculated for each type of estuary.

The analysis was based on a test of the hypothesis that the mean chlorophyll concentration for an estuary at any time was not greater than the trigger value. An acceptable level of power by convention is taken as 0.8. Power was calculated for a two-sample comparison with an effect size of a change in mean from 1.6 (current overall mean) to 3 (above trigger criteria). The standard deviation for the power analysis was estimated by taking the average CV (standard deviation/mean) for all samples (of each estuary type) within each dataset and applying that to calculate the standard deviation for each hypothesised mean. CV for dataset 1 was 0.17, and the number of samples to achieve a power of 0.8 was just 2. In dataset 2, mean CV for sites within an estuary each month was 0.4 for lakes, 0.8 for rivers and 0.7 for lagoons. This resulted in five, 14 and 12 samples (respectively) to achieve power of 0.8 for the comparison. In this dataset it would thus only be appropriate to compare annual means to triggers.

Post-hoc analyses of data from the 2008/09 summer MER sampling resulted in CVs of 0.22 for lakes, 0.16 for rivers and 0.17 for small lagoons – power to adequately test the hypothesis could thus be obtained by three samples for lakes and two samples for rivers and small lagoons. The large decrease in CV compared to dataset 2 is attributed to the move from analysis of water samples to

use of a logger to record data over a large spatial area, thus avoiding small to micro-scale variability.

An appropriate sample size is, as always, a compromise between power (protection against Type II error) and desired effect size. A sampling scheme with two or three samples collected from central basin sites six times (over the summer period only) would be more than sufficient to detect ecologically significant change between summer means and would even have sufficient power to reliably detect exceedances of trigger values at each time.

6.1.5 Estuary selection

In the pilot study commenced in MER Year 1 (2007), eight estuaries were sampled in each of the three estuary functional types: lakes, rivers and lagoons. Within each estuary type, three relatively undisturbed, two moderately disturbed and three highly disturbed systems were randomly chosen for sampling.

After the data and logistical considerations from the pilot were evaluated, an estuary selection strategy utilised a mixed model, with seven fixed 'sentinel' estuaries that are sampled every year to track inter-annual variability and a minimum of 27 stratified random 'roving' estuaries sampled within a particular region each year. Using a combination of fixed and stratified random sites is based on the sampling design for macroinvertebrates and fish used by the Sustainable Rivers Audit (Davies et al. 2008), which was established after considerable evaluation of a range of possible sampling strategies.

Roving estuaries will be sampled on a three-year rolling basis, with a specific CMA region (or group of CMAs) sampled each year. The CMA region divisions are:

- Northern Rivers
- Hunter-Central Rivers, Hawkesbury-Nepean, Sydney Metropolitan
- Southern Rivers.

Roving estuaries

Estuaries within a CMA region (or CMA region group) were initially divided into disturbance classes based on the ratio of current to pre-European settlement TN loads. Systems with TN load ratio <1.5 were defined as relatively undisturbed, 1.5 to 2.5 as moderately disturbed and >2.5 as highly disturbed (see Section 9.10). Estuaries within each disturbance class were then sub-divided into three types: lakes, rivers and lagoons. At least three examples of each disturbance/type group were selected from the available systems at random. Additional systems were selected as back-ups if access was not possible.

Sentinel estuaries

One example of high and low disturbance for each estuary type was selected as fixed sentinel sites. These were all in the central part of the NSW coast (but away from Sydney) for logistical reasons. Preference was given to systems with existing datasets.

Estuaries sampled in 2007/08 and 2008/09 are shown in Table 13. Note the number of estuaries sampled in each disturbance category were not identical reflecting subsequent refinement to the classification scheme.

2007/08			2008/09				
Estuary Type		Disturbance	Estuary	Туре	Disturbance		
Fixed sites							
Durras Lake	Lake	L	Durras Lake	Lake	L		
			Wallis Lake	Lake	М		
Lake Illawarra	Lake	Н	Lake Illawarra	Lake	Н		
Clyde River	River	L	Clyde River	River	L		
Shoalhaven River	River	М	Shoalhaven River	River	М		
Khappinghat Creek	Lagoon	М	Khappinghat Creek	Lagoon	М		
Fairy Creek	Lagoon	Н	Fairy Creek	Lagoon	Н		
Random sites							
Coila Lake	Lake	L	Conjola Lake	Lake	L		
Tuggerah Lake	Lake	М	Durras Lake	Lake	L		
Burrill Lake	Lake	м	Coila Lake	Lake	L		
Wamberal Lagoon	Lake	н	Wallagoot Lake	Lake	L		
Sandon River	River	L	Burrill Lake	Lake	М		
Hastings River	River	М	Wallaga Lake	Lake	М		
Karuah River	River	М	Merimbula Lake	Lake	М		
Hawkesbury River	River	М	Pambula River	River	L		
Tweed River	River	н	Moruya River	River	L		
Brunswick River	River	Н	Tuross River	River	L		
Richmond River	River	н	Towamba River	River	L		
Evans River	River	Н	Tomaga River	River	М		
Parramatta River	River	н	Candlagan Creek	River	М		
Georges River	River	Н	Bega River	River	М		
Minnamurra River	River	Н	Crooked River	River	Н		
Wattamolla Creek	Lagoon	L	Cullendulla Creek	River	Н		
Cuttagee Lake	Lagoon	L	Tabourie Lake	Lagoon	L		
Termeil Lake	Lagoon	М	Lake Brou	Lagoon	L		
Corunna Lake	Lagoon	М	Baragoot Lake	Lagoon	L		
Avoca Lake	Lagoon	Н	Merrica River	Lagoon	L		
Manly Lagoon	Lagoon	Н	Meroo Lake	Lagoon	М		
Towradgi Creek	Lagoon	Н	Bellambi Lake	Lagoon	Н		
			Mollymook Creek	Lagoon	Н		
			Tilba Tilba Lake	Lagoon	н		

 Table 13:
 Estuaries sampled for chlorophyll a and turbidity

6.1.6 Sampling methods

National indicator guidelines

Indicator guidelines have been developed by the former NLWRA via national coordination committees and their associates. The NLWRA advocates that the guidelines should be used as standards for the collection, collation and storage of data in order to assist NRM service providers and community groups make observations that can be potentially be pooled and re-used at a later date. Guidelines are available for chlorophyll a and turbidity/water clarity and have been adopted as the standard with some procedural modifications to suit the MER program objectives. The detailed sampling methods are described below and have also been incorporated into the national guidelines (see Appendix 13).

Site selection within estuaries

The spatial scale of interest is the entire central basin of lakes and lagoons, and the assumed chlorophyll maximum that occurs in the mid-upper sections of river estuaries. To facilitate representative spatial coverage, estuaries were divided into zones. For creeks and lagoons, zones were assigned on charts before sampling commenced. A zone was an area 500 to 700 m diameter in which sampling takes place. Sufficient zones (up to three) were allocated to the central basin of each estuary so that the majority of the estuary is represented. This may mean small systems have only one zone. In MER Year 2 (2008), only the middle estuary was sampled in river estuaries. The middle estuary was defined as having a salinity of 8–15 ppt, but due to the short-term temporal variability in salinity, the long-term location was defined as being in the vicinity of the upper limit of mangrove trees and this is where sampling was concentrated. Two zones were placed in the river in this vicinity. This procedure for rivers will be replaced by a longitudinal transect with continuously logged data from mid to upper estuary from MER Year 3 (2009) onwards.

Sample timing

The relevant temporal scale was the annual seasonal chlorophyll maxima. This was determined from the data gathered for the MER Year 1 (2007) pilot study, which collected data over the entire NSW coast for up to 16 months, and from other data sources. In general, chlorophyll concentrations were correlated with increasing water temperature, which occurred earlier in the north and central areas. Estuaries south of Sydney showed a distinct maximum in chlorophyll between late spring (mid November) and early autumn (end March). Between Sydney and the Manning River the maximum spanned the entire spring to autumn period. North of the Manning River, the maximum tended to be from early spring until early summer, before tropical rains flush the estuaries.

Sampling windows are thus:

- Northern Rivers CMA: mid September to end December
- Hunter–Central Rivers, Hawkesbury–Nepean and Sydney Metropolitan CMAs: mid September to end March
- Southern Rivers CMA: mid November to end March.

Spacing of sampling occasions was determined by a combination of logistics and the desire to fit six sampling occasions within the defined window. Southern Rivers CMA (MER Year 2 – 2008) estuaries were sampled at intervals of approximately three weeks, with all estuaries sampled within the same week.

Variables

The MER indicators that OEH sampled were chlorophyll a and clarity (turbidity and secchi), supported by salinity data.

Traditionally, chlorophyll concentrations in samples were determined by spectroscopic or fluorometric analysis of chlorophyll filtered from water samples and extracted in acetone. For reasons of logistics and spatial representation, OEH tested the use of in-situ fluorometer probes (YSI) for chlorophyll determination in the MER program. In order to cross-calibrate, water samples for chlorophyll a analysis were also collected.

Instrument calibration

The YSI Model 6820V2-S multiprobes used for the MER sampling were fitted with a fluorometric chlorophyll probe and a turbidity probe. The chlorophyll probe is factory calibrated and a standard solution of rhodamine was used prior to every field trip, to check that the calibration remains constant over time and is consistent among probes. Prior to each trip, turbidity is calibrated to nil and 50 NTU using milli-q filtered water and formazin standard respectively. Salinity is also calibrated to known standards prior to every trip.

Field procedures

Field procedures are provided in the national indicator guidelines (Appendix 13) and have been modified for the NSW Estuaries MER program as follows.

In brief, the field procedure was to travel to the upwind boundary of each zone in the estuary. The boat was then stopped and a reading of secchi depth was made. The water quality probe, which recorded chlorophyll (fluorometric), turbidity, salinity, temperature, depth and time, was lowered into the water in a special cradle to a depth of approximately 400 mm. The probe was set to log readings every second and the boat allowed to drift for five minutes, noting the start and end times of the drift. If there was insufficient wind, the boat was rowed or paddled for five minutes. This procedure captures data for a transect through the zone and allows the calculation of an average chlorophyll a and turbidity for the zone.

During the drift, a pole sampler was used to collect 10 x 1 m integrated water samples approximately 30 seconds apart. These samples were composited into a black bucket (to reduce light reflection). The fluorometric chlorophyll in the bucket was logged for two minutes and a water sample taken from the bucket.

Field data sheets which recorded the entrance state, riparian condition, observations about macroalgae and other submerged aquatic vegetation, weather and any other relevant observations were also filled out for each estuary.

Data analysis

Using the recorded start and end times, data for the transects in each zone and the data for the bucket, were extracted from the data files stored by the YSI probe. Mean and standard error was calculated for salinity, temperature, chlorophyll a and turbidity for each zone. Estuary means were calculated for each time by taking the mean of all zones in the estuary.

Calibration of in-situ fluorometric chlorophyll a and laboratory extracted chlorophyll was done by comparing the laboratory derived chlorophyll concentration in the composite water sample collected for the purpose during routine sampling, with the mean chlorophyll concentration in the

bucket indicated by the fluorometry probe prior to the laboratory sample being collected. The results showed that there was a non-linear relationship between laboratory and in-situ fluorometry chlorophyll measurements. This relationship was best represented by two linear relationships, one for low to medium chlorophyll (\leq 19 µg/l) and the other for high to very high chlorophyll (>19 µg/l). For in-situ fluorometry readings \leq 19 µg/l, lab = 0.68 x in-situ (n = 242; r² = 0.88). For in-situ >19 µg/l, lab = 0.92 x in-situ (n = 14; r² = 0.98). These relationships will, however, be affected by the calibration of the in-situ probe and may not be immediately transferable to other probes. The basis of these relationships is provided in Appendix 14.

6.2 Macrophytes

Estuarine macrophytes, including seagrass, mangroves and saltmarsh, play an important ecological role in estuaries. Seagrass beds provide food and shelter for numerous species (Keough & Jenkins 1995) and seagrass beds are recognised as essential nursery grounds for many economically and recreationally valuable species of fish. Seagrass plays an important role in the function of estuaries, but is susceptible to impacts resulting from variations in sedimentation, turbidity, light, salinity and nutrient levels (eg Gillanders 2007). The degradation or loss of this habitat impacts not only on the immediate location but on estuarine biological function as a whole.

Mangroves occur in estuaries along the entire NSW coastline. They are highly productive habitats, a rich source of nutrients and organic matter, and are recognised as providing important larval habitat for many species (Connolly & Lee 2007). Their proximity to the coastal fringe has made this habitat susceptible to various impacts, primarily resulting from anthropogenic origins. Clearing, increases in sediment discharge and changes in tidal regimes have impacted on the distribution of mangroves. Coastal development is seen to be the major cause of mangrove habitat loss in many parts of the world (Connolly & Lee 2007). However, in some NSW estuaries, it is suggested that human activities have enabled the expansion of mangroves at the expense of saltmarsh (Saintilan & Williams 1999, 2000). Historic mapping of estuarine macrophytes in the Hacking River (Williams & Meehan 2004) indicates that there has been a considerable amount of in-stream expansion of mangroves (DPI unpubl) potentially as a result of increased sedimentation.

Saltmarsh generally occurs on the same types of muddy shorelines as mangrove and is typically found landward of mangroves in the high tide zone (Adam 1990). Recent studies (eg Mazumder et al. 2005a, 2005b, 2005c, 2006) have shed some light on the importance of saltmarsh in estuarine ecosystems and it is recognised as an important habitat for invertebrates and fish (Williams 2001). Saltmarsh, particularly when in close proximity to developed areas, is prone to loss or degradation. The incursion of mangroves into saltmarsh habitat is considered the cause of saltmarsh loss in many estuaries (Saintilan & Williams 1999; Wilton 2002).

All seagrass and mangrove species in NSW are protected under the *Fisheries Management Act 1994*. The guidelines identify types of activities that can be injurious to estuarine habitats and offer measures to minimise disturbance. In relation to saltmarsh, this group of plants was listed as a Threatened Ecological Community under the *NSW Threatened Species Conservation Act 1995* (NSW Scientific Committee 2004) and there is a legal imperative to protect and monitor its distribution.

In line with procedures adopted at an Australia-wide level by the NLWRA (Mount et al. 2007) and endorsed for NSW by the NRC, only the three broad macrophyte categories are used in assessing estuarine condition in this report. However, mapping done in NSW describes distribution at the

species level (Creese et al. 2009). This allows a finer scale examination of any changes that may have occurred in the spatial extent of this macrophyte type.

6.2.1 Data sources

Estuarine inventory, 1985

The first comprehensive mapping of estuarine macrophytes in NSW commenced in the early 1980s, when the then NSW Fisheries began mapping the distribution of seagrass, mangrove and saltmarsh (West et al. 1985). The final inventory included a total of 133 estuaries. The methodology of this exercise involved API by the *camera lucida* technique. This system involved the use of a Bausch and Lomb Zoom Transfer Scope. The process included the tracing of macrophyte boundaries identified in the photos to 1:25,000 scale base maps. Most of the photos were of the scale 1:16 000. The area of each type of macrophyte was then determined by overlaying the mapped boundaries on 1 mm graph paper and counting the grid squares within the boundary of the defined macrophyte. All areas were reported in km². Further details are in Williams et al. (2003).

Current state-wide mapping, 2006

The current status of estuarine macrophytes in NSW has only recently been determined. This mapping is the result of a combination of projects including the NSW Comprehensive Coastal Assessment (CCA), Historic Mapping of Estuarine Macrophytes (HMEM) project for the Sydney Metropolitan CMA and the Seabed Mapping Project (SMP).

The CCA study focused on updating the estuarine macrophyte data in the estuaries north of Newcastle and south of Lake Illawarra (Williams et al. 2006). A key component of this study was the application of mapping protocols developed by DPI. With the exception of Georges River/Botany Bay, the estuaries from Lake Macquarie to Port Hacking were mapped in the SMP. Georges River/Botany Bay was mapped as part of the HMEM project.

Historic time series mapping

Extensive time series data are available for a small number of estuaries in NSW. This list expands as opportunities arise to map historical distributions of macrophytes at more locations or at other times.

Historic assessment includes some very recent ones in the Sydney Metropolitan CMA region (Table 14). Other published studies include Meehan 1997; Wilton 2002; Larkum & West 1990; Williams et al. 2000; Williams & Thiebaud 2007 (Table 15).

		-							
Estuary	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	Reference
Narrabeen Lake	-	1943	-	1964	1971	1986	-	2005*	HMEM/SMP
Dee Why Lagoon	-	1943	-	1964	1971	1986	-	2005*	HMEM/SMP
Harbord Lagoon	-	1943	-	1964	1971	1986	-	2005*	HMEM/SMP
Manly Lagoon	-	1943	-	1964	1971	1986	-	2005*	HMEM/SMP
Parramatta River/Sydney Harbour	-	1943	-	-	1978	1986	-	2000, 2003, 2005*	West et al. 2004; West & Williams 2008; HMEM; SMP
Georges River/Cooks River/Botany Bay	-	-	1951	-	1971	1986	-	2005	НМЕМ
Port Hacking	1930	1942	1951	1961	1975	1985	1999	2005*	Williams & Meehan (2004)/SMP

 Table 14:
 Estuaries of the Sydney region with time series macrophyte data (DPI unpubl)

Table 15:	Estuaries outside of Sydney with time series macrophyte data
-----------	--

	Area mapped	Date (start - finish; decadal data in between)
Seagrass	Cudgen Creek	1980–2000
	Cudgera Creek	1980–2000
	Mooball Creek	1947–2000
	Brunswick River	1980–2000
	Evans River	1990–2000
	St Georges Basin	1961–1998
	Burrill Lake	1940–1990
	Wagonga Inlet	1957–1994
	Wallaga Lake	1957–1994
	Bermagui River	1957–1998
	Merimbula Lake	1948–1993
	Pambula Lake	1948–1993
	Wonboyn River	1962–1997

	Area mapped	Date (start - finish; decadal data in between)
Saltmarsh/mangroves	Tweed River	1947–2000
	Ukerebagh Island, Tweed River	1948–1998
	Cudgen Creek	1947–2000
	Cudgera Creek	1947–2000
	Mooball Creek	1947–2000
	Brunswick River	1947–2000
	Belongil Creek	1947–2000
	Richmond River	1947–2000
	Evans River	1947–2000
	Tilligerry Ck, Port Stephens	1954–1996
	Black Neds Bay, Lake Macquarie	1950–1999
	Brisbane Waters	1954–1998
	Courangra Point, Hawkesbury River	1954–1994
	Careel Bay, Pittwater	1940–1996
	Currambene Ck and Cararma Inlet, Jervis Bay	1948–1999

6.2.2 Data quality

All mapping was carried out using the following standards:

- All mapping is derived from air photo interpretation.
- All scanned photos have an output resolution of 1 m
- Images provided in digital format are kept at their original resolution
- All images are orthorectified using
 - o NSW LPI 25 m DEM
 - NSW LPI Digital Cadastral Database (DCDB)
 - NSW LPI Digital Topographic Database (DTDB)
- The rectification error is no greater than 15 m, but can be as small as 2 m
- A preliminary map of all features for each estuary is mapped via on-screen digitising of macrophyte boundaries from the orthorectified images
- All digitising is carried out at a scale of 1:1 500
- Digitising tolerances are
 - o snapping tolerance 0.75 map units (metres)
 - streaming tolerance 1.5 map units (metres)

- Preliminary maps for every estuary are validated by field investigation (see Creese et al. 2009) with as many polygons and boundaries between habitat types checked as time allowed
- Preliminary maps are edited and amended where necessary based on the field validations
- All polygons are attributed to one of the three macrophyte categories. For seagrass, this is done on the basis of presence/absence if any seagrass at all is present in a polygon it is classified as 'seagrass'. Similarly, a 'mangrove' classification is given to any polygon which contains mangroves, even if some saltmarsh plants are also present. A polygon is classified as 'saltmarsh' only if it is the only macrophyte present
- A final map is created and lodged in the NSW Estuarine Macrophytes database, a corporate geodatabase held by DPI. An example of the distribution of macrophytes in the Brunswick River is shown in Figure 30.

6.2.3 Data analysis

A comparison of the change in extent of seagrass, mangrove and saltmarsh between the two surveys appears in Appendix 15. In summary, the distribution of the two main datasets and the change between them is shown in Figure 31.

There has been a relatively small increase from 107 to 110 estuaries in which seagrass was detected, an overall increase of 23.6 km² to 161.4 km² (17.1 per cent) in seagrass extent, and no obvious patterns in change along the coastline. By contrast, there was a large increase from 61 to 86 estuaries in which mangroves were detected representing mainly smaller systems being artificially opened or trained. An overall increase of 16.3 km² to 126.0 km² (14.8 per cent) in mangrove extent was recorded with increases appearing more frequent and larger along the north coast. For saltmarsh, there was an increase from 92 to 110 estuaries in which saltmarsh was detected but this may be attributed to the higher resolution attained in the 2006 mapping. For possibly similar reasons, an overall increase of 14.1 km² to 72.7 km² (24.2 per cent) in saltmarsh extent was observed between surveys.

Figure 30: Distribution of macrophytes in Brunswick River (from Williams et al. 2006)

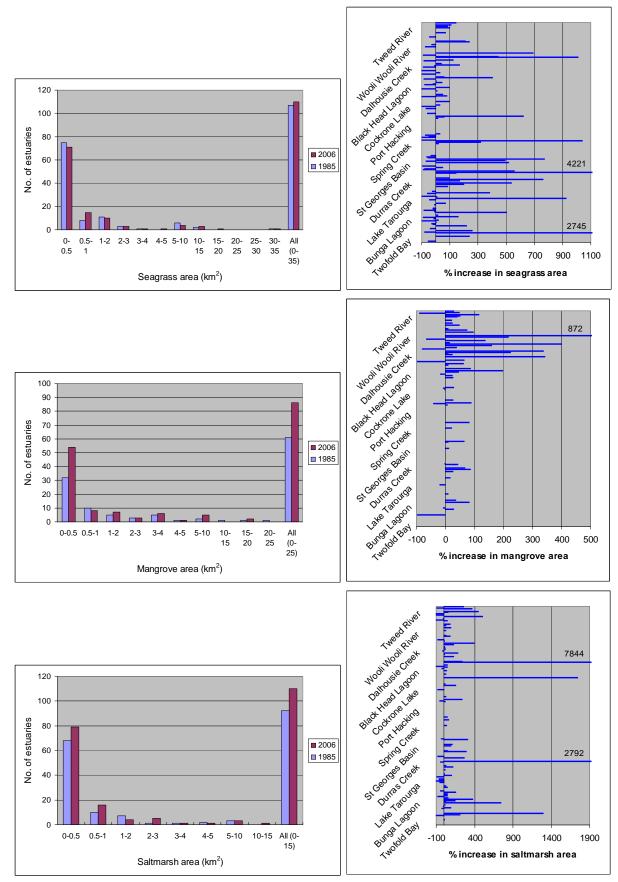


Figure 31: Data distributions of seagrass, mangrove and saltmarsh extent and change

6.3 Fish

6.3.1 Data availability

Past collection and analysis of data on the fish communities in NSW estuaries has been for a variety of purposes including stock assessment for commercially or recreationally important species, ecological studies of fish habitat use or biodiversity surveys. While most of this work has been done by DPI, much work has also been done by university researchers. Historically, apart from commercial fish catch data which are held by DPI in its ComCatch database, information on estuarine fish surveys is kept on Excel spreadsheets by the individual researchers. Even if this information was collated into a single database, most of it would not be suitable for use in estimating a fish condition index because that relies on having a dataset collected in a uniform way across a large number of estuaries (preferably along the entire coast) over a relatively short period of time.

In recognition of the need to more effectively ensure long-term availability of estuarine fish data however, a process was begun within DPI – Fisheries as part of the MER program to collate some of these data into a more easily searchable MS Access database known as the Estuarine Fish Ecology Database (EFED). To date, information from 17 fish biodiversity surveys done by DPI or associated groups since the late 1970s has been compiled in this system.

The data resides in the database in three main tables. The Environmental Table (13,961 records) includes information about the project, sample date and time, estuary (currently 140 estuaries), sample location (latitude, longitude, substrate, vegetation), sampling method (mostly seine net, but also beam trawl, prawn trawl, fish trawl, gill net, fyke net, dip net, crab trap, shrimp trap, poison station and diver census) and in most cases basic water quality data such as water temperature, salinity, turbidity, etc. The Catch Table (102,498 records) includes information about each fish species (572 species), number of individuals caught, total weight and length range in each sample. The Biological Table (404,953 records) includes the individual lengths of each commercially and recreationally important fish species and, in many cases also, the individual weight. The numbers of records cited above are current as at 12 August 2009.

Additional data on estuarine fish in NSW can be accessed from the Australian Museum's fish database. However, many of the data in this system come from the projects that comprise the EFED system. Also, the focus of the Australian Museum is the taxonomy and distribution of individual species rather than fish community structure. Catch data from commercial fishers who operate in estuaries also provide information on the geographical occurrence of fish species.

Information from these databases, together with information published on the website FishBase, in books and in scientific papers, is used to generate lists of fish species that might be expected to occur in NSW estuaries and to classify those species according to attributes like their geographical range or feeding mode.

6.3.2 Data used

The Estuarine Fish Community Index (EFCI) is a multi-metric index that combines four broad fish community attributes: species diversity and composition, species abundance, nursery function and trophic integrity into a single measure of estuarine condition. The index was developed for application to South African fish communities (Harrison & Whitfield 2004, 2006) and was trialled for

NSW estuaries for the SOC reports. Further details of how the data are used to generate the index and how these are then converted into scores of condition are given in Section 7.3.

In a pilot study in 2008, three estuary geomorphic types from Roy et al. (2001) (drowned river valleys, barrier estuaries and intermittently closed and open lakes and lagoons (ICOLLs) were defined within the central bioregion of the NSW coast and sampling conducted in each of these types. Sampling was done using seine nets for all three estuary types, but gillnets were also used in barrier estuaries and ICOLLs. Data from field surveys were checked and entered into EFED under the project name 'MER'. Analysis was then done to produce the indices for the SOC 2010 reports for the Hunter–Central Rivers and combined Hawkesbury–Nepean/Sydney Metropolitan regions.

No recent estuarine fish data, collected using a standard sampling protocol, are available for the northern and southern bioregions. Instead, data collected during a state-wide survey in 1999–2002 and stored in EFED under the project name 'Estuarine Biodiversity Survey' (EBS) were used for the assessment of the condition of fish assemblages in the Northern Rivers and Southern Rivers CMA regions. Fish were sampled using the same sized seine nets as used in the 2008 survey, but gill nets were not deployed. These data were analysed in the same way as for the UW fcb^T[aregion.

6.3.3 Data quality

For both surveys, all data were entered twice by different individuals into a Microsoft Access database at the end of each sampling period. The datasets were cross-checked for errors using a series of queries, with a single edited copy of the dataset then exported into the final EFED Access database.

6.3.4 Sampling methods

For both surveys, seine netting was used in all estuaries, with a minimum of five replicate hauls done at all sites. Sites were all situated within the Central Mud Basin (CMB) of estuaries (as defined by Roy et al. 2001). For the EBS survey, sites were sampled in several different estuarine zones, but data from only the CMB sites were used in the analysis.

Samples were collected using a 12 mm stretched mesh seine net with a 20 m headline, a 2 m drop and a cod-end. This net is designed to catch only small or slow-moving fish, and therefore does not provide a measure of the total fish diversity at a site. Each replicate net haul was done during daylight hours to form a U-shape that covered approximately 100 m². The ends were drawn together so that the sample was collected in the cod-end. The catch was then placed into a bucket, with fish over 100 mm being quickly measured and released alive. Remaining animals were euthanased with Benzocaine (ethyl p-amino-Benzoate) then transferred to 10 per cent formalin/seawater for transportation to the laboratory for processing. All fish sampling was undertaken in accordance with a DPI (Fisheries) Animal Care and Ethic Committee permit (no. 98/10).

All fish collected were identified to the lowest practicable taxonomic level, counted and measured. The Fish Section of the Australian Museum confirmed all fish identifications from initial surveys and any fish that could not be readily given a species name were kept for later determination by them as well. Either the entire sample (MER project) or a subset of fish caught (EBS project) were measured (total length).

Central bioregion

Data used to construct the final metrics for the central bioregion were based on MER data collected in 2008. Six sites were randomly selected using a GIS procedure. First, a polygon was created for the CMB. Second, the shoreline contained within this polygon was divided into 100 m segments which were numbered consecutively. Third, a random number generator was used to select six segments from the available list. Fourth, the selection was checked to ensure that not all selected sites were clumped together in one place. Wherever possible, sites on either shoreline were included in the selection.

At each site, five seine net shots were done as described above. In addition, for barrier estuaries and ICOLLs, three multi-panelled gill nets (total length of 25 m) were set on arrival at each site, spaced at least 20 m apart. Each net was set from a boat at a 45° angle from the shore and at a depth of no more than 3 m. Each gill net was left out for at least an hour of fishing time (while seine netting was undertaken) and then retrieved. Fish caught in gill nets were processed in the same way as described above. Thus, for each estuary there were 30 seine net samples and 18 gill net samples. These data were pooled to calculate the final metrics.

Northern and southern bioregions

Data used to construct the final metrics for the northern and southern regions were based on EBS data collected between 1999 and 2002. Some estuaries were sampled more than once during this time. In contrast to central region data, the methodology (eg number of seines, season sampled) varied among estuaries. In all cases, the most recent data were used in analyses. Where data for multiple seasons were available, 'summer' data were used wherever possible. If summer data were unavailable, 'spring' or 'autumn' data (in order of choice) were used (see Table 16).

Sites were not randomly selected *a priori* as they were for the MER program fish sampling, but rather were haphazardly chosen on arrival at an estuary. The number of sites sampled varied among estuaries based on estuary size (n = 1-8), but there were always at least five replicate hauls done at a site. Unequal replication at the 'site' level was not deemed problematic as the calculated metrics are based on pooled data and the interpretation is done on relative differences only (see Section 7.3).

For the purposes of making these relative comparisons, estuaries were categorised prior to analysis (Table 16 and Table 17). For the northern region, only 'permanently open (mature) barrier estuaries' and 'predominantly closed ICOLLs' were sampled. For the southern region, 'permanently open (mature) barrier estuaries', 'predominantly open ICOLLs' and 'predominantly closed ICOLLs' were sampled.

NORTHERN BIOREGION			
Estuary type	Season	Year	Total no. seines
Permanently open (mature) b	oarrier estuaries		
Tweed River	Spring	1999	25
Brunswick River	Spring	1999	33
Richmond River	Summer	1999	40
Clarence River	Summer	1999	40
Sandon River	Autumn	2002	20
Wooli Wooli River	Autumn	2002	20
Boambee Creek	Summer	2002	30
Moonee Creek	Spring	2002	15
Bellinger/Kalang River	Autumn	2002	40
Nambucca River	Autumn	2000	25
Macleay River	Summer	1999	25
Korogoro Creek	Summer	2001	20
Hastings River	Summer	2000	40
Manning River	Autumn	2000	40
Predominantly closed ICOLLs			
Cudgera Creek	Summer	2002	10
Belongil Creek	Summer	2002	6
Tallow Creek	Summer	2002	5
Broken Head Creek	Summer	2002	5
Station Creek	Spring	2002	10
Corindi River	Autumn	2002	20
Pipe Clay Creek	Summer	2002	5
Arrawarra Creek	Summer	2002	5
Darkum Creek	Summer	2002	10
Woolgoolga Lake	Summer	2002	10
Hearns Lake	Summer	2002	10
Dalhousie Creek	Autumn	2002	10
Oyster Creek	Autumn	2002	15
South West Rocks Creek	Autumn	2002	15
Saltwater Creek	Autumn	2002	10
Killick Creek	Summer	2001	10
Lake Cathie	Summer	2000	25

 Table 16:
 EBS data used in analyses for the northern bioregion

SOUTHERN BIOREGION			
Estuary type	Season	Year	Total no. seines
Permanently open (mature)	parrier estuaries		
Shoalhaven River	Autumn	2000	40
Cullendulla Creek	Spring	2001	10
Candlagan Creek	Spring	2001	10
Moruya River	Summer	2001	25
Bega River	Spring	2001	25
Towamba River	Summer	2001	10
Predominantly closed ICOLL	5		
Meroo Lake	Autumn	2001	8
Willinga Lake	Autumn	2001	5
Lake Brunderee	Spring	2001	10
Lake Brou	Summer	2001	8
Lake Mummuga (Dalmeny)	Summer	2001	8
Nangudga Lake	Autumn	2001	10
Tilba Tilba Lake	Autumn	2001	5
Baragoot Lake	Autumn	2001	8
Murrah Lagoon	Spring	2001	10
Bunga Lagoon	Spring	2001	8
Middle Lagoon	Spring	2001	5
Wallagoot Lake	Summer	2001	15
Back Lagoon	Summer	2001	5
Curalo Lagoon	Summer	2001	10
Nullica River	Summer	2001	5
Predominantly open ICOLLs			
Conjola Lake	Spring	2000	40
Narrawallee Inlet	Autumn	2001	10
Tuross Lake	Summer	2001	40
Wapengo Lagoon	Autumn	2001	10
Nelson Lagoon	Autumn	2001	10
Merimbula Lake	Summer	2000	40
Pambula River/Lake	Summer	2000	40
Wonboyn River	Summer	2001	30

 Table 17:
 EBS data used in analyses for the southern bioregion

7. Reference conditions and scoring classes

To assess the health or integrity of an estuary requires establishing reference or baseline conditions against which biological data can be compared. Reference conditions are necessary for each estuary class so that comparisons can be made among estuaries within that class and between classes. There are a number of different approaches to the setting of reference conditions:

- Use of historical records where available, recognising that some disturbance will have occurred, and adopting the median as the reference condition (US EPA 2001)
- Sampling of least disturbed reference sites and adopting the 75th percentile (US EPA 2001) or the 80th percentile (ANZECC 2000) as reference. It is desirable to have at least ten sites per class to sample (US EPA 2000)
- Using all available data from across the spectrum of least to highly disturbed systems and adopting a conservative percentile, eg 25th, of the data distribution as reference. This approach can be applied where too few reference sites exist (eg one or two) or where all existing sites are known to be impaired to varying degrees (US EPA 2000)
- Use of either descriptive or mechanistic models to hind-cast reference conditions. Descriptive models rely on empirical relationships (correlative or statistical models) between variables to predict what reference conditions might have been pre-development. Mechanistic models simulate the underlying processes with the same objective of predicting reference. They both rely on comprehensive datasets (Harrison & Whitfield 2004)
- Expert input using a qualified team of regional specialists to provide professional judgement on reference conditions.

Once reference conditions are established for each estuary class, those systems that are highly degraded define the other end of the spectrum of condition. Each biological metric can then be assessed by the extent of deviation from reference and threshold risk levels set between reference and highly disturbed for rating the condition. Ideally, the thresholds are based on ecological or biological effects of the metric exceeding each threshold. Examples might include the level of dissolved oxygen at which fish mortality rises or the light levels at which seagrass and other submerged aquatic vegetation is affected. Frequently this information is not available and the alternatives are to use the data distribution to divide the data into equal intervals, equal percentiles (equal areas under a frequency distribution curve) or else some multiple of deviation from reference.

Once these threshold levels have been defined and the condition scored, simple risk assessment methods may be used to combine data on pressures and modulating factors such as dilution, flushing, water clarity etc. with the condition assessment to assign priorities for management. If a predictive modelling framework is available, more detailed assessment of cause-effect may provide greater spatial resolution and certainty to the management response. Depending on the data, the scale at which responses can be framed may be specific to an issue within an estuary or at a higher level if the issue is more ubiquitous and better dealt with on a regional or state-wide basis.

7.1 Chlorophyll a and turbidity

7.1.1 Reference conditions

For each of the three classes of lakes, rivers and lagoons, there were 29, 24 and 29 datasets (82 in total) available for chlorophyll a and 18, 16 and 18 for turbidity (52 in total) respectively. As explained in Section 5.3.4, chlorophyll a datasets for 16 estuaries were excluded from further analysis, thus reducing the number of available chlorophyll a datasets to 27, 17 and 22 for lakes, rivers and lagoons respectively. To define those sites that were minimally impacted with respect to chlorophyll a and turbidity, the ratio of increase in TN loading (see Section 9.10) was adopted as the measure of disturbance in recognition that estuaries are generally nitrogen limited (Ryther & Dunstan 1971). Other related measures of disturbance such as the pressure indicators of cleared land or population density are not as closely linked to eutrophication effects and others such as freshwater flows or habitat disturbance even less so (Table 30). An overall pressure index describing general catchment and waterway disturbance was not considered to provide a realistic indication of which estuaries are likely to be in reference condition whereas the increase in TN loading captures the combined effects of catchment development generally.

Shown following in Figure 32 are stressor-response plots of annual TN areal load and chlorophyll a replotted from Figure 19. Coloured data points have been used for the TN load increase to show the distribution of data by the level of disturbance. The dataset from the 66 estuaries underpinning the plots is shown in Appendix 16. The dataset for river class estuaries has chlorophyll a concentrations averaged across medians for three functional zones based on salinity (see Sections 5.3.4 and 6.1.3).

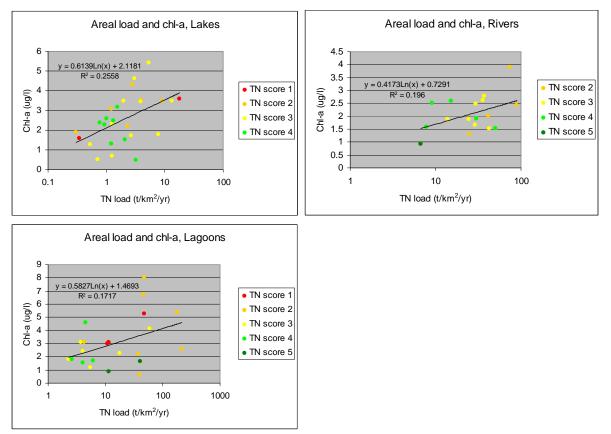


Figure 32: Median chlorophyll a concentrations by load and estuary class

There are a number of observations that can be made from these plots and the dataset in Figure 32 and Appendix 16:

- For each of the lake, river and lagoon classes, there are 0, 1 (Sandon River) and 2 (Wattamolla Creek and Merrica River) sites respectively that have the lowest TN ratio score of 5 representing relatively undisturbed conditions. This would suggest that the sole use of undisturbed sites to set reference conditions is not practical
- A significant number of moderately to highly disturbed sites, as indicated by the yellow (TN score 3) and orange (TN score 4) coloured data points respectively, have relatively low TN areal loads and chlorophyll a concentrations. This is not unexpected as they represent systems that would have higher dilution and/or flushing rates than other systems in the same estuary class
- Natural variability in catchment, geomorphic, hydrodynamic and morphometric characteristics
 will mean that some systems within a class have a greater capacity to withstand increased
 catchment nutrient loads. At the other end of the spectrum, some systems will have naturally
 higher chlorophyll levels and will only tolerate a relatively small increase in nutrient loads
 before eutrophication becomes an issue. These systems are more susceptible to human
 disturbance.

In view of the above, two approaches were examined:

• The definition of an undisturbed catchment was relaxed to include those estuaries with a TN increase score of 4 as well as 5. TN increase scores of 4 and 5 correspond to percentage increases in TN export from undisturbed catchment conditions to current land-use of 50 and 10% respectively (Table 40). Adopting this approach increased the number of reference estuaries from 0, 1 and 2 to 8, 6 and 6 for each of lakes, rivers and lagoons respectively (see Appendix 16).

The 80th percentile (ANZECC 2000) and 75th percentile (US EPA 2001) of all data for reference estuaries in each class were then calculated. Chlorophyll a sample numbers varied between 15–552 for the eight lakes; 6–57, 4–44 and 5–25 for the 7 lower, 5 mid and 3 upper river estuaries respectively; and 5-283 for the 6 lagoons (see Table 18). For an explanation of the lower mid and upper river zonation see Section 6.1.3. The percentile calculations took all samples together which can bias the percentiles towards those estuaries with larger sample numbers. Examination of the box and whisker plots revealed that the data distributions for reference systems in each estuary class fell in about the same range. The notable exception was Port Hacking which had 552 samples out of a total of 881 (63 per cent) for all eight lake reference systems. Port Hacking sample results reflected oceanic conditions as the two sampling sites were located very near the mouth. Accordingly Port Hacking was excluded from the calculation.

Further consideration could be given to whether other statistical methods should be used to reduce the effect of sample size, for example re-sampling randomly the minimum sample size from the other datasets (which would lose some data) or else calculating the 80th percentile for each reference system and, if the distribution is normal, taking the median or mean

• The 25th percentile of all data within each class was also calculated for comparison.

For the purpose of calculating trigger values, all data back to 1975 were pooled but with the same proviso used for the summary statistics for rivers (Section 6.1.3) – that data collected with salinity <

2 ppt were excluded except for MER program data. This same rule was also applied to the scoring of sampling results against the trigger values. For the lake and lagoon estuary classes all data were used irrespective of salinity. Older data were also excluded if large numbers of samples were taken on a single day in a month over only a few months.

Two lake class estuaries qualifying as being in reference condition, Nadgee Lake and Port Hacking, were excluded from the trigger value calculations. Nadgee Lake was excluded because of major algal blooms over the sampling periods. Port Hacking was excluded because 63% of all the pooled sample data for the lake class were from Port Hacking and the two sites monitored by Sydney Water were at Gunnamatta Bay and Maianbar, close to the estuary mouth, which would reflect oceanic conditions. Pooling Port Hacking samples collected only near the estuary mouth would therefore bias trigger value calculations. It should be noted that nearly all data used for trigger values and results scoring were collected in the 1990s and 2000s.

The trigger values were initially calculated incorporating new chlorophyll a and turbidity data collected in reference condition estuaries during the 2007/08 summer sampling period. Triggers were calculated for lake, low/mid/upper river and lagoon sites. Over the course of the project, additional data were collected during the 2008/09 summer which, for chlorophyll, generally increased the number of reference estuaries with data from 5 lake; 6, 5 and 3 lower, mid and upper river; and 3 lagoon sites to 7, 7, 5, 3 and 6 sites respectively. For turbidity, the corresponding increase in the number of systems was from 4 lake; 3, 4 and 2 lower, mid and upper river; and 2 lagoon sites up to 6, 7, 5, 2 and 6 sites respectively. The reference condition systems on which the trigger values are based, the sampling period and numbers of samples are shown in Table 18.

	Sar).		
Lake	Years	Chl a	Years	Turb
Myall River/Lake	05-09	70	05-09	36
St Georges Basin	08-09	15	08-09	15
Conjola Lake	08-09	18	08-09	18
Durras Lake	07-09	48	07-09	48
Coila Lake	06-09	68	07-09	47
Wapengo Lagoon	95-96	82	Nil	0
Wallagoot Lake	02-09	22	02-09	18

 Table 18:
 Reference estuaries for calculation of trigger values

	Lower -	- sample	dates an	d no.	Mid –	sample o	dates and	no.	Upper -	- sample	dates an	d no.
River	Years	Chl a	Years	Turb	Years	Chl a	Years	Turb	Years	Chl a	Years	Turb
Sandon River	97-99	57	97-99	47	97-07	44	97-07	42	98-08	10	07-08	14
Bellinger River	96	32	96	32	96	36	96	36	96	25	96	25
Clyde River	06-09	52	07-09	25	07-08	15	07-08	7	Nil	0	Nil	0
Moruya River	06-09	38	08-09	11	07-08	4	08	1	07	5	Nil	0
Tuross River	95-09	36	08-09	4	95-09	10	08-09	6	Nil	0	Nil	0
Pambula River	02-09	22	08-09	18	Nil	0	Nil	0	Nil	0	Nil	0
Towamba River	08-09	6	08-09	6	Nil	0	Nil	0	Nil	0	Nil	0

	Sample dates and no.					
Lagoon	Years	Chl a	Years	Turb		
Wattamolla Creek	96-08	283	07-08	32		
Tabourie Lake	08-09	12	08-09	11		
Lake Brou	08-09	12	08-09	12		
Baragoot Lake	08-09	12	08-09	12		
Cuttagee Lake	07-08	26	07-08	22		
Merrica River	09	5	08-09	5		

New 80th percentile trigger values incorporating the 2008/09 data were calculated all as shown in Table 19 and Table 20 for chlorophyll a and turbidity respectively. As can be seen, the 25th percentile values taken from all sites are generally below the 80th percentile values taken from only reference condition sites. The consistent difference may reflect the more degraded nature of estuaries in the United States and the concomitant skewing of data distributions towards degraded conditions. In compliance with the recommendations of the ANZECC water quality guidelines, the 80th percentile concentrations were adopted as the trigger values for a management response.

After including the 2008/09 data, the trigger values changed marginally for chlorophyll a except for the mid river and lake sites because of the larger increase in the number of these sites from which data could be drawn. There were major changes in the turbidity triggers at nearly all sites because of the large increase in the number of estuaries with turbidity data after the 2008/09 sampling season. The trigger values calculated from inclusion of the 2008/09 data in the datasets were adopted. Following 2009/10 sampling in the northern region, triggers are likely to be recalculated on a three year cycle corresponding with completion of future rounds of resampling in the southern, central and northern regions.

In the future, if extensive data exists for an individual estuary, the guidelines recommend water quality statistical distributions be examined (eg for break-points indicating change) and ecological and/or biological effects of physical and chemical stressors. This would enable trigger values to be calculated for an individual system.

	Chlorophyll a (µg/l)							
	All data up to and inc	007/08	Incl. 2008/09					
Estuary class	80 th %ile of reference	75 th %ile of reference	25 th %ile of all sites	80 th %ile of reference				
Lake	2.5	2.3	1.2	3.6				
River – lower	2.1	2.0	1.3	2.3				
River – mid	2.2	1.9	1.1	2.9				
River – upper	3.5	3.4	2.2	3.4				
Lagoon	1.9	1.7	1.5	2.0				

Table 19: Comparison of chlorophyll a trigger values

Table 20: Comparison of turbidity trigger values	Table 20:	Comparison of turbidity trigger values
--	-----------	--

	Turbidity (NTU)							
	All data up to an	Incl. 2008/09						
Estuary class	80 th %ile of reference			80 th %ile of reference				
Lake	6.7	5.9	2.2	5.7				
River – lower	1.9	1.8	1.5	5.0				
River – mid	1.9	1.8	1.7	8.0				
River – upper	23.9	22.4	7.0	13.7				
Lagoon	2.2	1.9	1.9	3.3				

7.1.2 Scoring classes

For chlorophyll a and turbidity, there are a number of alternative approaches to scoring the extent of deviation from reference condition:

- The ANZECC water quality guidelines recognise three ecosystem conditions and levels of protection:
 - o Level 1: high conservation/ecological value systems
 - o Level 2: slightly to moderately disturbed systems
 - Level 3: highly disturbed systems

A level of protection is a level of quality desired by stakeholders and reference conditions may vary depending on the level of protection selected. Statistical decision criteria for detecting departure from reference vary according to the level of protection. Ideally data should be collected monthly over two years to understand ecosystem variability and set trigger values, below which there is a low risk that adverse biological effects will occur.

For Level 1, no change beyond natural variability is recommended and where reference condition is poorly characterised, actions to increase the power of detecting change are also recommended. However no specific criteria are provided.

For Level 2, negotiated decision criteria are recommended with a default of the 80th percentile of reference condition.

For Level 3, decision criteria may be more lenient than the previous two condition categories with a default of the 90th percentile of reference.

The guidelines recommend comparing the median of replicate samples from a test site with the low risk trigger value as the median represents the most robust descriptor. The guidelines were not specifically established to rate the extent of deviation of the median beyond trigger values and are therefore silent on this subject

- The Queensland water quality guidelines (DERM 2009) adopt the general approaches of the ANZECC guidelines but are more specific with regard to statistical decision criteria for Level 1 systems. If the 20th, 50th and 80th percentiles of the reference site data fall within the 75 per cent confidence intervals around each of the 20th, 50th and 80th percentiles of the test site data, then the site is taken as complying. Again though, no attempt is made to rate the extent of deviation from reference
- The Ecosystem Health Monitoring Program for South East Queensland (EHMP 2008) measures compliance with a water quality objective (WQO) in four categories
 - <0.5 x WQO (compliant: dark green)
 - o 0.5 1.0 x WQO (compliant: light green)
 - o 1.0 1.5 x WQO (non-compliant: orange)
 - >1.5 x WQO (non-compliant: red).

A benefit of this method is that the extent of deviation of sample values from the water quality objective can be seen from the number of values lying in each category

• A fourth option is to compare the number of samples complying with the guideline trigger values using pre-determined statistical decision criteria. This method is not as useful in

showing how close a sample value is to meeting the guideline trigger value. A sample value may be very close to meeting the trigger value but still be classed as non-complying. However, after considering the lack of data on ecologically or biologically relevant thresholds, this was the option initially adopted for the MER program. After examining the data distribution, the scoring system used was:

- very good: <10% exceedance of test site data above trigger
- o good: 10 <50% exceedance
- fair: 50 <75% exceedance
- o poor: 75 <90% exceedance
- very poor: ≥90% exceedance.

Other scoring methods might include dividing scores into three equal percentiles between, say, the 5th and 95th percentiles, or else anchoring the frequency distribution by an ecologically relevant threshold then dividing scores equally amongst percentiles either side of the threshold, say in two percentiles representing condition better than the threshold and three percentiles representing worse (Wicks et al. 2011). These alternatives should be further explored for the next round of SOC reporting.

7.2 Macrophytes

7.2.1 Reference conditions

As discussed in Chapter 5, current classification systems for macrophytes and the status of research on factors controlling macrophyte distribution and extent are not sufficiently advanced to define an 'ideal mix' of seagrass, mangrove and saltmarsh in any given system. Research by DPI is leading to a better understanding of the factors controlling seagrass colonisation preferences (see West & Williams 2008 in relation to Sydney Harbour) and it is anticipated that this knowledge, together with other research findings (Ron West, University of Wollongong, pers comm.), will allow better assessment of the condition of macrophyte assemblages in the future.

Until better research is available, the approach adopted has been to report on the change in macrophyte extent based on the two major surveys covering all NSW estuaries.

7.2.2 Scoring classes

Prior to developing scoring classes, a comparison was made between the change in macrophyte extent shown by the two major surveys and the limited number of time series surveys identified in Chapter 6. The broad direction of change was confirmed by the comparison for seagrass, but there were inconsistencies for mangrove and saltmarsh.

For mangroves, comparison of the two survey periods was likely to more accurately reflect real change as operator error between surveys of this large woody vegetation type is likely to be minimal. However, interpretation of what any change means ecologically is open to challenge.

Increasing mangrove extent could be due to a number of factors including:

- recolonisation in areas previously removed which would be viewed as a positive change
- colonisation upslope into areas currently occupied by saltmarsh which might be viewed as negative considering the limited areas of saltmarsh within NSW estuaries and its listing as a Threatened Ecological Community

• marinisation (increasing salinity) of estuaries through entrance training, artificial entrance openings of lagoons, water extraction upstream and lower rainfall associated with drought and climate change which could be considered as negative.

Mangroves have an important functional role in providing structural habitat, a food source, filtering capacity and erosion protection. However, with current knowledge, it is difficult to generalise as to whether a change in mangrove extent is positive or negative for estuary health without conducting estuary specific studies. The scoring system adopted has therefore been to say that stable mangrove extent, defined as change of between -10 to +10% between the two surveys, is good. Any change outside that range has been shaded grey, indicating that change data were held but interpretation requires further investigation. The data, therefore, are considered as 'baseline only'.

More realistic assessments of condition were considered possible for the other two macrophyte categories – seagrass and saltmarsh. As the two major surveys used different methods, changes of between -10% and +10% in extent were interpreted as being within the order of accuracy of the methods. Gains or losses beyond \pm 10% were scored according to the following scale: very good >10% gain, (good \leq 10% gain to -10% loss, fair >-10 to -40% loss, poor >-40 to -70% loss and very poor >-70 to -100% loss.

The first survey did not differentiate between all the tributaries flowing into each port, bay or harbour. To enable direct comparisons, the areas of macrophytes for Port Stephens, Hawkesbury–Nepean River, Port Jackson, Jervis Bay and Ulladulla Harbour incorporate some of the tributary areas from the second survey. For example, the areas for Tilligery Creek from the second survey, but not the Karuah River or Myall River/Lakes areas, have been incorporated into the Port Stephens areas to enable comparison with the first survey.

A rating of 'not applicable' (na) has been assigned when the areas in both surveys have been recorded as zero showing that the macrophyte has never occurred in that estuary. This is particularly relevant for estuaries that intermittently close for periods of time which is not conducive to mangrove colonisation. Some of the smaller creeks also have minimal seagrass.

7.3 Fish

Traditionally, biotic measures of ecosystem condition have often included single indicators based on species diversity, dominance or presence/absence. Indices are being developed particularly for freshwater systems that capture information from individual, population and community levels to provide a more integrated assessment of biological integrity (Harrison & Whitfield 2006). One such index is the multi-metric Estuarine Fish Community Index (EFCI) developed to describe the health of 190 South African estuaries spanning three biogeographic regions and three distinct estuary types.

The EFCI uses 14 metrics that represent four broad fish community attributes: species diversity and composition, species abundance, nursery function and trophic integrity. The rationale for each metric and an *a priori* hypothesis of direction that disturbance should drive the metric are shown in Table 21.

EFCI metric	Rationale	Response to environmental stress
Species diversity and composition		
1. Total number of taxa	Simplest measure of diversity	Reduced
2. Rare or threatened species	Presence imparts additional conservation value	Absent
3. Exotic or introduced species	Potential threat to naturally occurring taxa	Present
4. Species composition (relative to reference assemblage)	Similarity is a measure of biological integrity	Reduced
Species abundance		
5. Species relative abundance	Captures change from many species in relatively low proportions to simple assemblages dominated by few communities	Reduced
6. Number of species that make up 90 per cent of the abundance	Dominance by fewer species	Reduced
Nursery function		
7. Number of estuarine resident taxa	Estuaries are important habitat for resident taxa	Reduced
8. Number of estuarine- dependent marine taxa	Estuaries fulfil role of nursery habitat for marine taxa as well as estuarine resident taxa	Reduced
9. Relative abundance of estuarine resident taxa	Between 9. and 10., quantitative, complementary measures of estuarine habitat quality and nursery function	Very low or very high
10. Relative abundance of estuarine-dependent marine taxa		Very low or very high
Trophic integrity		
11. Number of benthic invertebrate feeding taxa	Indirect measure of the condition of the benthic invertebrate fauna	Reduced
12. Number of piscivorous taxa	Diverse and abundant top carnivores represent the broader trophic network in estuaries	Reduced
13. Relative abundance of benthic invertebrate feeding taxa	Between 13. and 14., quantitative and complementary analysis of trophic integrity	Reduced
14. Relative abundance of piscivorous taxa		Reduced

Table 21: Metrics used in the EFCI (from Harrison & Whitfield 2004, 2006)

7.3.1 Reference conditions

For South African fish assemblages, Harrison & Whitfield (2006) developed reference conditions taking into account inherent morphological differences between estuaries as well as zoogeographic differences. Three geomorphic types of small closed, moderate to large closed and predominantly open estuaries and three biographic regions of sub-tropical, warm-temperate and cool-temperate climate were adopted and separate reference conditions developed for each of the nine possible combinations of type and bioregion. This was necessary for eight of the 14 metrics used to construct the index.

Rather than making *a priori* assumptions about which systems are undegraded, the EFCI for South African estuaries uses the best values observed for each metric for a particular estuary type in a particular region to define the reference conditions. The same approach was adopted for NSW estuaries.

Metrics 1, 6, 7, 8, 11 and 12 used the mean of the upper quartile of the data distribution as the reference condition, and metrics 2 and 3 used presence and/or absence. Metrics 4 and 5 used a Bray-Curtis similarity measure to compare the species assemblage and abundance in each estuary with a reference assemblage and abundance for each estuary type and bioregion after removing all exotic and introduced taxa. For metrics 9 and 10, reference conditions were considered as those where the species numerically comprised between 25 and 75 per cent of the total abundance. Metric 13 adopted reference conditions as being benthic invertebrate feeding fishes numerically comprising \geq a percentage which varied by estuary type and bioregion (eg 10 per cent for moderate to large closed estuaries in warm-temperature climates) of the total fish abundance. Similarly for metric 14, reference was defined as piscivores comprising \geq a percentage (eg 1 per cent for the same estuary type and climate as 13) of the total fish abundance.

Due to the different dates and designs of sampling programs for the northern/southern bioregions (Estuary Biodiversity Survey 1999–2002) and the central bioregion (MER Sampling Program 2008) and the geographic distribution of estuary geomorphologies, the estuary types sampled varied as follows:

- Northern region permanently open riverine barrier estuaries and predominantly closed ICOLLs
- Central bioregion drowned river valleys, large barrier lagoons and predominantly closed ICOLLs
- Southern bioregion permanently open riverine barrier estuaries, predominantly closed ICOLLS and predominantly open ICOLLs.

Reference conditions were therefore required for five different estuarine geomorphic types.

Drowned river valleys and large barrier lagoons in the central region are all highly modified and/or support significant commercial fishers. Therefore, reference conditions are probably less representative of 'undisturbed' environments than for the other two regions.

7.3.2 Scoring classes

Having established reference conditions for each metric, the extent of deviation from reference can be used to assign thresholds for scoring each estuary. The EFCI established thresholds such that a score of 5, 3 or 1 could be assigned to each metric as shown in Table 22.

		Score	
Metric	5	3	1
Total number of taxa	≥90% of reference	<90% and ≥50%	<50%
Rare or threatened species	Present	Absent	
Exotic or introduced species		Absent	Present
Species composition (% similarity to reference)	≥80%	<80% and ≥50%	<50%
Species relative abundance (% similarity to reference)	≥60%	<60% and ≥40%	<40%
Number of species that make up 90% of abundance	≥90% of reference	<90% and ≥50%	<50%
Number of estuarine resident taxa	≥90% of reference	<90% and ≥50%	<50%
Number of estuarine- dependent marine taxa	≥90% of reference	<90% and ≥50%	<50%
Relative abundance of estuarine resident taxa	25–75%	≥10% and <25% or >75% and ≤90%	<10% or >90%
Relative abundance of estuarine-dependent marine taxa	25–75%	≥10% and <25% or >75% and ≤90%	<10% or >90%
Number of benthic invertebrate feeding taxa	≥90% of reference	<90% and ≥50%	<50%
Number of piscivorous taxa	≥90% of reference	<90% and ≥50%	<50%
Relative abundance of benthic invertebrate feeding taxa	Dependent on spread of the data	Dependent on spread of the data	Dependent on spread of the data
Relative abundance of piscivorous taxa	Dependent on spread of the data	Dependent on spread of the data	Dependent on spread of the data

Table 22: Metric scoring thresholds for fish assemblages

The metric scoring thresholds corresponding to each of the five different estuary geomorphologies and three different bioregions are given in Table 23.

Assuming that all metrics have equal weighting, the overall index is calculated by summing all the individual metric scores. The minimum possible score is 16, the maximum is 68 and a score of 3, or moderate, for each metric yields a total index score of 42. Harrison & Whitfield (2006) adopted five scoring classes of: very good (64–68), good (46–62), moderate (40–44), poor (22–38) and very poor (16–20). After examining the data distribution for NSW fish assemblages the scoring classes adopted for the MER program were: very good (60–68), good (49–59), fair (36–48), poor (25–35) and very poor (16–24) which approximated a normal data distribution.

These biological criteria can be used to provide information to support management decisions such as establishing goals to protect or restore biological integrity, determining whether designated uses have been attained and whether they are appropriate or attainable (Harrison & Whitfield 2004).

Table 23: Metric scoring criteria for NSW estuaries

	N = Northern bioregion	Predomin	antly Closed ICOLL	s (N, C, S)	Large Bar	rier Lagoons (C) / Pro Open ICOLLS (S)	edominantly		tly Open Riverine Barr i) / Drowned River Vall	
	C = Central bioregion		Score	core		Score	Score		Score	
tuarine Fish Community Index Metric S = Southern bioregion		5	3	1	5	3	1	5	3	1
Species Diversity and Composition										
1 Total number of taxa (species richne	ess per estuary)									
Northern Bioregion		>25	25-15	<15				>47	47-24	<24
Central Bioregion		>27	27-15	<15	>37	37-21	<21	>33	33-19	<19
Southern Bioregion		>23	23-14	<14	>42	42-24	<24	>40	40-23	<23
2 Protected species (present or absent	t per estuary)	present	absent		present	absent		present	absent	
3 Exotic / introduced species (present	or absent per estuary)		absent	present		absent	present		absent	present
4 Species composition (frequency of o	ccurence per estuary)	≥80%	<80% and ≥50%	<50%	≥80%	<80% and ≥50%	<50%	≥80%	<80% and ≥50%	<50%
Species Abundance										
5 Relative species abundance (using n	nean relative (%) abundance)	≥60%	<60% and ≥40%	<40%	≥60%	<60% and ≥40%	<40%	≥60%	<60% and ≥40%	<40%
6 Most abundant species (number of s	pecies that make up 90% of abunda	nce)								
Northern Bioregion		>6	6-4	<4				>8	8-5	<5
Central Bioregion		>7	7-4	<4	>13	13-8	<8	>11	11-7	<7
Southern Bioregion		>9	9-6	<6	>15	15-9	<9	>14	14-9	<9
Nursery Function										
7 Estuarine resident taxa (number of e	stuarine resident taxa per estuary)									
Northern Bioregion		>13	13-8	<8				>30	30-17	<17
Central Bioregion		>18	18-10	<10	>23	23-13	<13	>20	20-12	<12
Southern Bioregion		>16	16-10	<10	>28	28-16	<16	>28	28-16	<16
8 Estuarine dependent marine taxa (nu	umber of estuarine dependent marin								10.0	
Northern Bioregion Central Bioregion		>6 >7	6-3 7-4	<3 <4	>9	9-6	<6	>10 >9	10-6 9-6	<6 <6
Southern Bioregion		>6	7-4 6-4	<4 <4	>9 >11	9-0 11-7	<0 <7	>9 >10	9-0 10-6	<0 <6
 9 Abundance of estuarine residents (re 	elative (%) abundance of estuarine	-	≥10% and <25% or	<10% or	25-75%	≥10% and <25% or	<10% or	25-75%	≥10% and <25% or	<10% or
resident taxa)		20/010/0	>75% and ≤90%	>90%	2010/0	>75% and ≤90%	>90%	2010/0	>75% and ≤90%	>90%
10 Abundance of estuarine dependents	(% abundance of estuarine-	25%-75%	≥10% and <25% or	<10% or	25-75%	≥10% and <25% or	<10% or	25-75%	≥10% and <25% or	<10% or
dependent marine taxa)			>75% and ≤90%	>90%		>75% and ≤90%	>90%		>75% and ≤90%	>90%
Trophic Integrity										
11 Benthic feeding taxa (number of ben	thic invertebrate feeding taxa)									
Northern Bioregion		>13	13-8	<8				>27	27-16	<16
Central Bioregion		>13	13-8	<8	>22	22-13	<13	>21	21-12	<12
Southern Bioregion		>14	14-8	<8	>26	26-15	<15	>23	23-14	<14
12 Fish eating taxa (number of piscivoro	ous feeding taxa)									
Northern Bioregion		>3	3-2	<2				>5	5-3	<3
Central Bioregion		>2	2	<2	>3	3-2	<2	>2	2	<2
Southern Bioregion		>1	1	<1	>4	4-3	<3	>4	4-3	<3
13 Abundance of benthic feeders (% ab feeding taxa per estuary)	undance of benthic invertebrate	≥10%	<10% and ≥5%	<5%	≥10%	<10% and ≥5%	<5%	≥10%	<10% and ≥5%	<5%
14 Abundance of fish eaters (% abunda	nce of piscivorous taxa)	≥1%	<1% and ≥0.5%	<0.5%	≥1%	<1% and ≥0.5%	<0.5%	≥1%	<1% and ≥0.5%	<0.5%

8. Results of sampling programs

8.1 Chlorophyll a and turbidity

Data collected from sampling under the MER program during the 2007/08 and 2008/09 summer seasons were entered into the KEVIN database and the last three years of data supplied by all custodians (see Appendix 10) were used to score compliance of each estuary with the guideline trigger values described in Chapter 7. Three years was chosen as the assessment period for a number of reasons:

- It would reduce the inter-annual climatic variability in rainfall and temperature
- The sampling program is on a three-year cycle
- It is consistent with the approach of the Sustainable Rivers Audit for inland rivers and the comparable program for coastal rivers.

The actual dates used for sorting data were based on financial years from July to June to capture all summer data in each year of analysis. However for the first round of SOC reporting, data from July 2005 to June 2008 together with data from the 08/09 MER program summer sampling have been used for the analysis. In addition, all data have been analysed and reported but any assessments using data collected before July 2005 have been identified with cross-hatching over the top of the colour ramp.

8.2 Macrophytes

As trials on mapping of macrophytes using remote sensing technology are still in progress (Anstee et al. 2009), no new satellite-derived data were collected for the SOC reports. Rather, analyses of aerial photographs were used to make the comparisons for this assessment.

Two different mapping methodologies (initially *camera lucida*, followed by GIS) were used to compare the extent of macrophyte cover over the past several decades. Variations in detail, representation and minimum mapping unit between the datasets means that where small changes have occurred it is difficult to determine how much of the variation is attributed to change in habitat cover or is simply a difference in the mapping process. Nevertheless, where large changes have occurred, at the scale of hectares, there are strong implications that cover has expanded or contracted (Meehan et al. 2005). For this reason, condition scores are based on broad estimates of change between the two different surveys. It is recommended that the values used in the calculation of these comparisons only be a guide and should be used by CMAs and other NRM agencies to prioritise the selection of estuaries, for which more detailed and standardised mapping could be applied to determine the historic trends.

Analysis of historic time series data are currently available for a small number of estuaries and any future mapping of historic trends in these and other estuaries will provide a better understanding of the variations of estuarine macrophytes within the individual estuaries.

8.3 Fish

The two datasets used in this analysis (see Section 6.3) yielded the values shown in Table 24. These have been adopted as the initial scoring results for assessing the health of NSW fish assemblages. As analytical techniques improve, the values may be refined. Further, ongoing research being done

by DPI on so-called 'Fishery Independent' ways of measuring the abundance of estuarine fish (Rotherham et al. 2007), (C. Gray pers. comm.) can probably be used just as effectively for fish biodiversity assessments as for more traditional assessments of harvestable fish stocks.

Table 24: Scoring classes for fish assemblages in NSW estuaries

(a) Northern Rivers region. Seine net samples from the Estuary Biodiversity Survey dataset.

Estuary	Index score	Index rating	Condition score
Tweed River	40	Fair	3
Cudgera Creek	42	Fair	3
Brunswick River	40	Fair	3
Belongil Creek	40	Fair	3
Tallow Creek	22	Very poor	1
Broken Head Creek	28	Poor	2
Richmond River	54	Good	4
Clarence River	48	Fair	3
Sandon River	40	Fair	3
Wooli Wooli River	40	Fair	3
Station Creek	38	Fair	3
Corindi River	46	Fair	3
Pipe Clay Creek	32	Poor	2
Arrawarra Creek	46	Fair	3
Darkum Creek	34	Poor	2
Woolgoolga Lake	52	Good	4
Hearns Lake	46	Fair	3
Moonee Creek	38	Fair	3
Boambee Creek	56	Good	4
Bellinger River	50	Good	4
Dalhousie Creek	46	Fair	3
Oyster Creek	36	Fair	3
Nambucca River	50	Good	4
Macleay River	48	Fair	3
South West Rocks Creek	48	Fair	3
Saltwater Creek	28	Poor	2
Korogoro Creek	42	Fair	3
Killick Creek	34	Poor	2
Hastings River	56	Good	4
Lake Innes/Lake Cathie	52	Good	4
Average score			3.00

Rating	Range
Very poor	16–24
Poor	25–35
Fair	36–48
Good	49–59
Very good	60–68

(b) Hunter–Central Rivers region. Seine net samples combined with gill net samples from the MER program dataset (except for the Manning River which is from the Estuary Biodiversity Survey dataset). Drowned river valleys (**) were not sampled with gill nets.

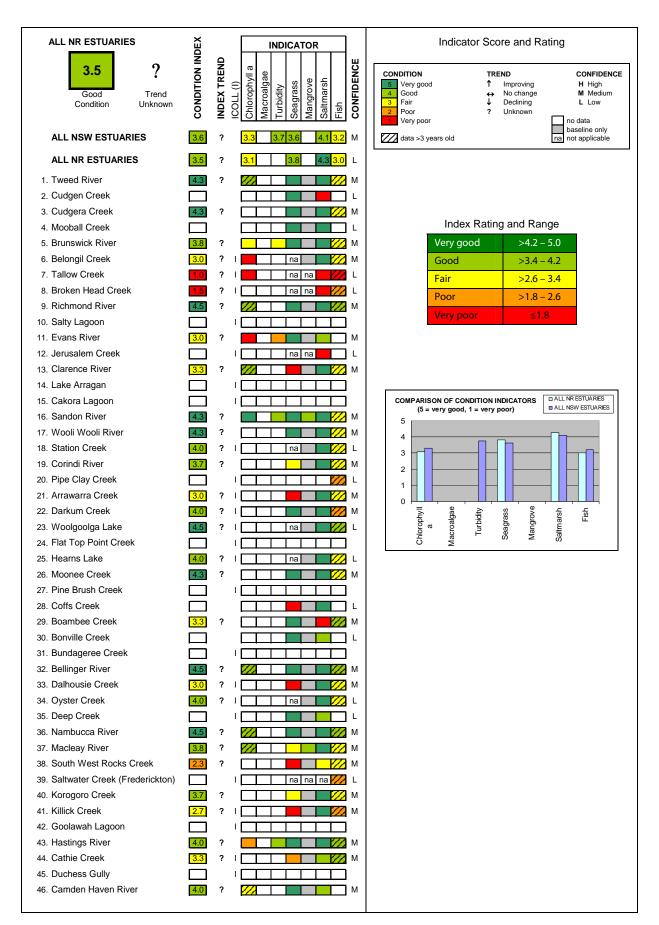
Estuary	Index score	Index rating	Condition score
Manning River	48	Fair	3
Khappinghat Creek **	62	Very good	5
Wallis Lake	40	Fair	3
Karuah River **	42	Fair	3
Lake Macquarie	58	Good	4
Tuggerah Lake	56	Good	4
Wamberal Lagoon	40	Fair	3
Terrigal Lagoon	42	Fair	3
Avoca Lake	38	Fair	3
Cockrone Lake	32	Poor	2
Brisbane Water	54	Good	4
Average score			3.36

Rating	Range
Very poor	16–24
Poor	25–35
Fair	36–48
Good	49–59
Very good	60–68

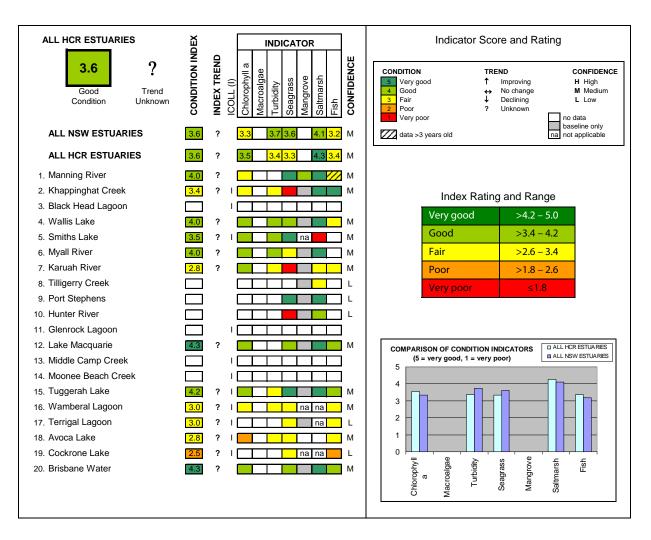
(c) Hawkesbury–Nepean/Sydney Metropolitan region. Seine net samples combined with gill net samples from the MER program dataset. Drowned river valleys (**) were not sampled with gill nets.

Estuary	Index score	Index rating	Condition score
Hawkesbury River **	56	Good	4
Pittwater **	50	Good	4
Dee Why Lagoon	42	Fair	3
Port Jackson **	48	Fair	3
Georges River **	46	Fair	3
Port Hacking **	58	Good	4
Average score			3.50

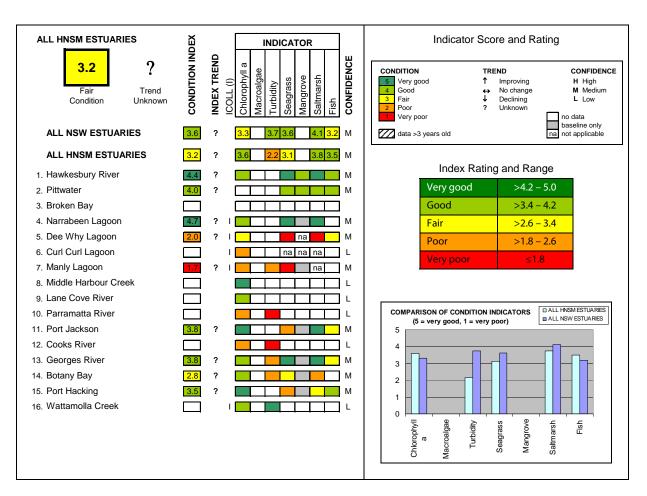
Rating	Range
Very poor	16–24
Poor	25–35
Fair	36–48
Good	49–59
Very good	60–68


Estuary	Index score	Index rating	Condition score
Lake Illawarra	52	Good	4
Shoalhaven River	48	Fair	3
St Georges Basin	48	Fair	3
Conjola Lake	62	Very good	5
Narrawallee Inlet	40	Fair	3
Meroo Lake	32	Poor	2
Willinga Lake	30	Poor	2
Cullendulla Creek	44	Fair	3
Candlagan Creek	44	Fair	3
Moruya River	66	Very good	5
Tuross River	64	Very good	5
Lake Brunderee	44	Fair	3
Lake Brou	36	Fair	3
Lake Mummuga	56	Good	4
Nangudga Lake	44	Fair	3
Tilba Tilba Lake	28	Poor	2
Baragoot Lake	34	Poor	2
Murrah River	54	Good	4
Bunga Lagoon	32	Poor	2
Wapengo Lagoon	46	Fair	3
Middle Lagoon	30	Poor	2
Nelson Lagoon	42	Fair	3
Bega River	62	Very good	5
Wallagoot Lake	36	Fair	3
Back Lagoon	38	Fair	3
Merimbula Lake	46	Fair	3
Pambula Lake	56	Good	4
Curalo Lagoon	54	Good	4
Nullica River	32	Poor	2
Towamba River	52	Good	4
Wonboyn River	58	Good	4
Average score			3.26

(d) Southern Rivers region. Seine net samples from the Estuary Biodiversity Survey dataset.


RatingRangeVery poor16-24Poor25-35Fair36-48Good49-59Very good60-68

8.4 Condition ratings for NSW estuaries


Following the methods outlined in the previous chapter, ratings were generated for the condition indicators of chlorophyll a, turbidity, macrophyte extent and fish assemblages as shown in Table 25, Table 26, Table 27 and Table 28 for each CMA region.

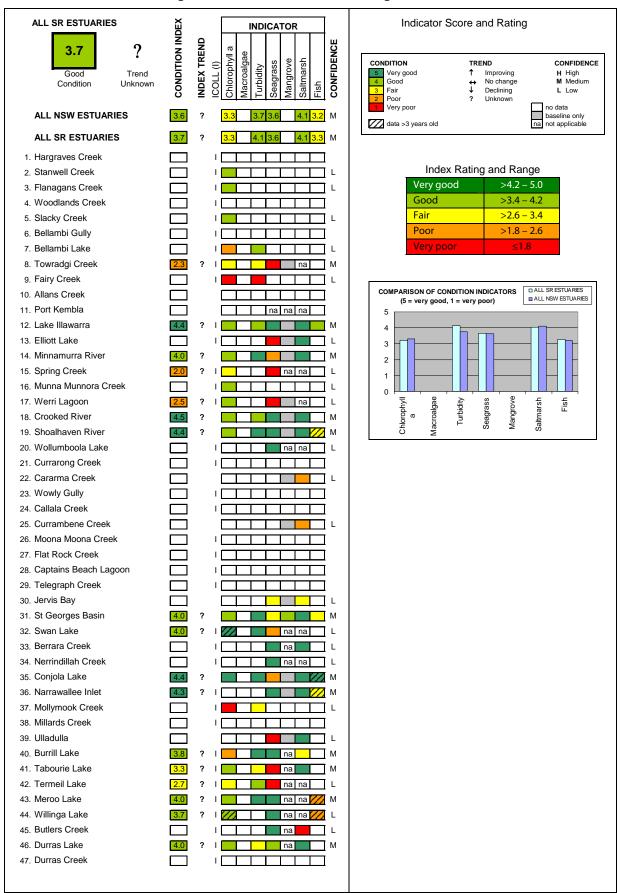

Table 25: Condition rating of estuaries in Northern Rivers region

Table 26: Condition rating of estuaries in Hunter-Central Rivers region

Table 27: Condition rating of estuaries in Hawkesbury–Nepean and Sydney Metropolitan regions

48. Maloneys Creek		
49. Cullendulla Creek		
50. Clyde River	4.0 ?	
51. Batemans Bay		
52. Saltwater Creek (Rosedale)		
53. Tomaga River		
54. Candlagan Creek	3.8 ?	
55. Bengello Creek		
56. Moruya River	4.8 ?	
57. Congo Creek		
58. Meringo Creek		
59. Kellys Lake		
60. Coila Lake	4.0 ? I na M	
31. Tuross River	4.2 ? M	
2. Lake Brunderee		
63. Lake Tarourga		
64. Lake Brou	2.8 ? I M	
5. Lake Mummuga	3.7 ? M	
6. Kianga Lake		
7. Wagonga Inlet		
8. Little Lake (Narooma)		
9. Bullengella Lake		
 Nangudga Lake 	4.3 ? I na 🥢 L	
1. Corunna Lake	3.5 ? I na M	
2. Tilba Tilba Lake	2.8 ? I na M	
3. Little Lake (Wallaga)		
74. Wallaga Lake	2.5 ? I na M	
5. Bermagui River		
6. Baragoot Lake	2.6 ? I na M	
7. Cuttagee Lake	4.0 ? I na M	
78. Murrah River	4.7 ?	
79. Bunga Lagoon	2.7 ? I na k	
80. Wapengo Lagoon	4.5 ?	
1. Middle Lagoon	4.0 ? I na 💋 L	
2. Nelson Lagoon	3.0 ?	
33. Bega River	3.6 ? I na 777 M	
 Wallagoot Lake 	4.6 ? I na 🥢 M	
35. Bournda Lagoon		
36. Back Lagoon	4.0 ? I na 🊧 L	
7. Merimbula Lake	3.3 ?	
8. Pambula River	4.0 ?	
9. Curalo Lagoon		
0. Shadrachs Creek		
1. Nullica River	3.0 ? I	
2. Boydtown Creek		
3. Towamba River	4.6 ?	
4. Fisheries Creek		
5. Twofold Bay		
6. Saltwater Creek (Eden)		
97. Woodburn Creek		
98. Wonboyn River		
99. Merrica River		
00. Table Creek		
01. Nadgee River		
02. Nadgee Lake		

9. Pressure data

9.1 Sources of pressure data

Catchment action plans (CAPs) from the Northern Rivers, Hunter–Central Rivers and Southern Rivers CMAs all contained information on the main pressures affecting the health of their catchments. These pressures have been extracted from the CAPs in the form they were expressed and grouped up into themes (Appendix 18). The other two CAPs from the Hawkesbury–Nepean and Sydney Metropolitan CMAs did not identify pressures in a form suitable for a summary. While there is significant overlap of pressures between CMAs there are also differences which may reflect local priorities or expertise.

A second source of potential pressures on estuaries can be found in the work of the CRC for Coastal Zone, Estuary and Waterway Management. In the Users' Guide to Estuarine, Coastal and Marine Indicators for Regional NRM Monitoring (Scheltinga et al. 2004), the CRC have identified 13 main stressors as being physical, chemical and biological components of the environment that, when changed by human or other activities, can result in degradation of natural resources. Ecosystem condition (physical-chemical and biological) and habitat extent indicators have been identified for each stressor together with potential causes of change to the stressor and potential symptoms of a changed stressor. Finally the CRC compiled a list of direct and indirect indicators of pressures potentially impacting each stressor. A summary has been prepared showing stressor, direct and indirect pressure indicators, ecosystem condition and habitat extent indicators (Appendix 19). A preliminary assessment of the feasibility of collating these pressure data on the basis of estuaries theme team familiarity with available datasets is shown as green (feasible) or brown (more difficult) shading.

The table in Appendix 19 was reworked to only include condition indicators proposed to be monitored under the MER strategy together with their corresponding stressors and pressures and is shown in Table 29 with feasibility shading. Note that freshwater flow regime has been included as a stressor even though it was not associated with a specific condition indicator in Scheltinga et al. (2004). Changing environmental flows into estuaries has multiple effects on salinity and turbidity regimes, sedimentation patterns, entrance condition, algal response, aquatic vegetation distribution and the estuarine food web generally.

9.2 Criteria for selecting estuary pressures

Criteria relevant to the selection of which pressure data, identified through the CAPs and the Coastal CRC tables, were feasible to collect include:

- data availability along all the NSW coastline
- time required to collate available data
- ability to gap-fill pressures using empirical relationships
- ability to model pressure (if no monitored data available)
- strength of known link to resource condition in the literature
- readily available reference condition.

Table 30 lists those pressures and stressors best satisfying most of the selection criteria, and includes the rationale or pathway for how the pressure or stressor impacts resource condition. The pressure/stressor indicators have been categorised by catchment, riparian, foreshore or waterway use and climate change. These are the datasets for which collation and/or modelling were initiated.

Condition indicator	Stressor		Pressure		
	Type Change		Direct	Indirect	
Pelagic chlorophyll a Macroalgae over seagrass beds Epiphytes on seagrass leaves	Nutrients (changed)	Nutrient load Water column concentrations Bioavailability	Total diffuse source nutrient load (monitored or modelled)	Catchment land-use Amount of fertiliser applied per unit area (including urban) % of farming area using best management practice % of length of stream with healthy riparian zone % of urban area under stormwater management plan % of area under aquaculture	
			Total point source nutrient load (monitored or modelled)	% of sewage treatment plants with tertiary treatment Volume/number of sewage overflow events	
	Hydrodynamics (changed)	Tidal exchange Water currents Wave patterns	Change in tidal exchange rates/residence time Change in tidal compartment		
Secchi disk depth, turbidity, seagrass depth range	Aquatic sediments (changed)	Sediment load Distribution/movement patterns Settlement/resuspension rates	Total diffuse sediment load (monitored or modelled)	Catchment land-use % of farming area using best management practice % of length of stream with healthy riparian zone % of length of streams in grazing area fenced	
	Grain size of suspended or settled sediments		Total point source sediment load (monitored or modelled)		
			Volume of sediment moved / extracted		

Table 29: Stressors and pressures for each condition indicator

Condition indicator	Stressor		Pressure	
	Туре	Change	Direct	Indirect
Seagrass, saltmarsh, mangrove extent/distribution	Habitat removal / disturbance	Removal, loss or disturbance of large areas of habitat	% of estuary / coas t/ marine area modified	% of aquatic area under mining lease Number of boating/shipping visits Number of registered boats in region % of estuary/coast/marine area designated for future modification Coastal population size Recreational usage (eg number of facilities on coast [boat ramps, parks, etc.), % estuary, coast and marine systems accessible, tourism (visitation rates, etc.]) % of area under aquaculture
Fish assemblages	Biota removal / disturbance	Removal, loss or disturbance of individual organisms of a specific species	Commercial seafood catch Recreational seafood catch Bait catch Area disturbed by bait fishing Area disturbed by trawling Area disturbed by boat anchor damage Fisheries by-catch	Number of registered boats in region Length of shark nets/drum line present Recreational usage (eg number of facilities on coast [boat ramps, parts, etc.], % estuary, coast and marine systems accessible, tourism [visitation rates, marina berths, etc.]) Coastal population size Number of trawlers and dredges using area Number of commercial fishing licences Number of licensed collectors (of aquarium fish, shells, etc.) Number of impoundments without fish ladders

Condition indicator	Stressor		Pressure	
	Туре	Change	Direct	Indirect
No specific indicator(s)	Freshwater flow regime (changed)	Changes to pattern/amount of catchment waters entering estuarine and coastal systems	Change in median freshwater input (volume)	% of median annual flow impounded/extracted
			Base freshwater input compared to total estuary volume	
			Number of times freshwater flow greater than estuary volume	
			Change in seasonality of freshwater input	

LEGEND

Data feasible to collate

Data more difficult to collate

Table 30: Estuary pressures and stressors with data likely to be available state-wide

Pressure indicator	Rationale	Strer	ngth of	link to	o cond	ition iı	ndicato	or ¹	Reference condition for	Data source	Used (Y/N) ²
		Chlorophyll a	Turbidity	Macroalgae	Seagrass	Mangrove	Saltmarsh	Fish	pressure		
Catchment use											
Catchment population	Component of urban stormwater, sewage overflows, contributes to general degradation	~	~	~	×	×	×	×	Increase from zero baseline	ABS 2001 census plus OEH proportioning of Census Collection Districts	Yes
Land-use	Increase in sediment, nutrient and organic loads	√ √	√ √	√ √	√ √	~	~	~	Increase from zero baseline	OEH mapping 2000–07	Yes
Catchment runoff	Increase in streambank erosion and frequency of erosive events, change in flushing time	√	~	~	~	×	×	×	Increase from pre-1750	OEH catchment hydrology models (2CSalt)	Yes
Soil erosion potential	Potential reduction in estuary water clarity	×	~~	×	~	×	×	×	Increase from pre-1750	OEH soil erosion hazard models and, Future results from MER Soils Theme	No
Sediment loads	Reduction in estuary water clarity	×	v v	×	~	~	×	×	Increase from pre-1750	OEH export models linked to 2CSalt	Yes
Reticulation vs unsewered septics	Contributes to nutrient and organic loads	✓	~	~	~	×	×	×	Increase from zero baseline	OEH records and forward plans	No
Licenced STP discharges	Contributes to nutrient, suspended solid and organic loads	✓	~	~	~	×	×	×	Increase from zero baseline	OEH licence records	Yes
Nutrient loads	Increase in algal growth, reduction in water clarity	√ √	×	~ ~	~	×	×	~	Increase from pre-1750	OEH export models linked to 2CSalt	Yes

Pressure indicator	Rationale	Strei	ngth of	f link t	o cond	ition iı	ndicato	or ¹	Reference condition for	Data source	Used (Y/N) ²
		Chlorophyll a	Turbidity	Macroalgae	Seagrass	Mangrove	Saltmarsh	Fish	- pressure		
Riparian use (freshwa	ter streams and estuary shoreline)										
Riparian vegetation extent	Indicative of water quality filtering capacity	~	~	✓ 	~	×	×	×	Increase from zero baseline	OEH SLATS mapping, SPOT5 imagery and, Future results from MER Rivers Theme	No
Riverine geomorphic condition	Bed and bank stability and erosion	×	VV	×	~	×	×	×	River Styles reference reaches	River Styles assessments, OEH river reference reach database and, Future results from MER Rivers Theme	No
Water extraction	Reduction in freshwater inputs especially during low flows	~	~	~	~	×	×	×	Increase from zero baseline	NOW licence records	Yes
Riverine macroinvertebrate communities	Indicative of freshwater stream pollution potential and input	~	~	✓ 	✓ 	×	×	×	Observed / expected SIGNAL2 score	OEH macroinvertebrate records and, Future results from MER Rivers Theme	No

Pressure indicator	Rationale	Strer	ngth of	link to	o condi	ition in	ndicato	o r ¹	Reference condition for pressure	Data source	Used (Y/N) ²
		Chlorophyll a	Turbidity	Macroalgae	Seagrass	Mangrove	Saltmarsh	Fish	pressure		
Foreshore use (intertio	lal and adjacent shallow water)										
Foreshore structures – reclamation, walls, groynes, jetties, oyster depuration sites	Removal of foreshore habitat	×	×	×	vv	√ √	v v	×	Increase from zero baseline	Crown Lands licence records	Yes
Moorings – piles, marinas	Shading and/or disturbance of seagrass beds	×	×	×	~	×	×	×	Increase from zero baseline	Crown Lands licence records	No
Aquaculture	Shading and/or disturbance of seagrass beds	×	×	×	~	×	×	×	Increase from zero baseline	DPI Fisheries lease records	Yes
Waterway use		•	•	•		•		•			
Entrance works	Training walls increase tidal range, flushing, marinisation (salinity)	√ √	√ √	√ √	×	×	×	~	Increase from zero baseline	OEH Estuaries database	Yes
Artificial entrance opening	Reduces inundation frequency and duration of peripheral aquatic vegetation, increases marinisation (salinity)	~~	~~	~~	~	~	~	•	Increase from natural frequency	Council records, aerial photos, OEH water level recorders	Yes
Dredging	Generates fine sediment plumes, removes aquatic habitat	×	~	×	✓	×	×	~	Increase from zero baseline	Crown Lands licence records	No
Wild harvest fisheries	Reduces commercially important fish and prawn species	×	×	×	×	×	×	√ √	Increase from zero baseline	DPI Fisheries licence records	Yes
Invasive species	Competition for native species	×	×	×	√ √	×	×	×	Increase from zero baseline	DPI Fisheries records	No

Pressure indicator	Rationale	Stre	ngth of	link to	o cond	ition ir	ndicato	or ¹	Reference condition for	Data source	Used (Y/N) ²
		Chlorophyll a	Furbidity	Macroalgae	Seagrass	Mangrove	Saltmarsh	Fish	- pressure		
Climate change	-						•				
Sea level rise	Raises inundation levels of peripheral aquatic vegetation, changes light regimes and submerged aquatic vegetation distribution	×	×	×	×	••	~~	×	Change from earliest record		No
Rainfall change	Changes estuary hydrology, pollutant export and flushing rates	~	~	~	~	×	×	×	Change from earliest record	BoM/OEH rainfall stations	No
Air temperature change	Changes water temperature, biological productivity, bio- geochemistry, species composition	~	×	~	×	×	×	×	Change from earliest record	BoM temperature gauges	No

Notes:

1: The column on strength of link indicates the extent to which current literature supports a cause-effect relationship between pressure and condition. This table needs to be supported by conceptual models with references to relevant papers and reports. The scoring system of ticks and crosses is intended to show:

- strong link with good potential for development of empirical stressor-response model of pressure and condition
- ✓ known link but relationship unlikely to be significant or capable of modelling
- × very indirect link with no modelling potential.

2: Some of the pressures not currently reported on will be incorporated into future SOC reports as data become available.

9.3 Ports, bays and harbours

For the five pressure indicators of cleared land, population, sediment input, nutrient input and freshwater flow, the contributions from each tributary catchment together with the catchment draining directly to the port, bay or harbour were summed and reported. This is a more meaningful way of reporting the total pressure acting on the port, bay or harbour.

9.4 Pressure indicator correlation

A correlation analysis of the pressure variables was generated to assess whether metrics were too closely related to act as single metrics. As might be expected Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorus (TP) all had correlation coefficients greater than 0.85 as shown in Table 31 and are potentially redundant (Morris et al. 2007). All of the other pressure variables had coefficients less than 0.85. TN was chosen to represent nutrient input but TSS has been retained for the purposes of this initial assessment. Further investigation will be undertaken on methods for separating pressures, as defined by human activity, from environmental stressors such as changes to nutrient and sediment inputs, freshwater and tidal flows.

				Marked co	rrelations (in	red) are sid	nificant at	p < .0500	00			
	%	Population				Entrance	<i>(</i>	Annual	% TSS	% TP	% TN	Freshwate
	cleared	/ km ²	flows	structures	under	opening	entrance	fish	increase	increase	increase	flow /
	land	,	extracted	perimeter	aquaculture	level m	training	catch /				volume
				-	-	AHD	walls	km ²				
Pressure variable												
% cleared land	1.000		_									
Population / km ²	0.533	1.000										
% surface flows extracted	0.114	0.022	1.000		_							
% structures perimeter	-0.102	-0.037	0.284	1.000								
% estuary under aquaculture	-0.149	-0.121	0.088	0.090	1.000		_					
Entrance opening level m AHD	-0.136	-0.154	0.055	-0.035	0.133	1.000						
No. of entrance training walls	0.148	-0.082	0.095	0.108	0.182	0.142	1.000		_			
Annual fish catch / km ²	0.015	-0.124	0.198	0.135	0.039	-0.083	0.252	1.000				
% TSS increase	0.144	0.011	0.106	-0.076	-0.080	0.073	-0.034	-0.087	1.000			
% TP increase	0.212	0.112	0.012	-0.118	-0.125	0.079	-0.055	-0.131	0.697	1.000		
% TN increase	0.158	0.038	0.061	-0.104	-0.112	0.092	-0.055	-0.121	0.906	0.924	1.000	
Freshwater flow / volume	0.046	0.028	-0.057	-0.105	-0.101	0.109	-0.113	-0.125	0.303	0.822	0.656	1.000

Table 31: Correlation matrix for pressure variables

9.5 Indicator scoring classes

In common with the condition indicators, there are a number of similar approaches to developing scoring classes. If the relationships between pressures, stressors and ecological response were well understood, thresholds at which pressures triggered unacceptable biological or ecological effects would be available. This is not the case and simple statistical decision rules were developed based on whether the pressure data were normally distributed or skewed. Equal intervals were generally applied to normally distributed data and equal percentiles to data skewed to one end of the distribution.

9.6 Cleared land

9.6.1 Data sources

The land-use areas aggregated for calculating the amount of cleared land in each estuary catchment are discussed in Section 4.2.2 and are shown in Appendix 7. The area of cleared land within each estuary catchment was normalised by comparing it to the total area of the catchment

and calculating a percentage cleared. Because of the method used to aggregate land-uses for the 2CSalt modelling, the catchment area includes the estuary and macrophyte areas except for the nine ports, bays and harbours.

9.6.2 Interpretation

Land cleared for agricultural, residential and industrial development is a major pressure in many NSW coastal catchments and is known to result in increased inputs of eroded sediments, nutrients and organic material to the estuary.

The data distribution using the two options of equal percentiles and equal intervals is shown in Table 32. Using the equal percentile data bands, minimal catchment disturbance was assumed to occur for cleared land <7.5 per cent.

Pressure	Equal percentiles (%	cleared)	Equal intervals (% o	Equal intervals (% cleared)				
score	Data band	No. of estuaries	Data band	No. of estuaries				
5	0 - <7.5	37	0-<20	71				
4	7.5 – <21.7	37	20-<40	41				
3	21.7 – <39.1	36	40 - <60	24				
2	39.1 - <68.5	37	60 - <80	29				
1	68.5 – 100	37	80 – 100	19				

Table 32: Data distribution for cleared land

9.7 Population density

9.7.1 Data sources

Census data were obtained from the Australian Bureau of Statistics for 1996, 2001 and 2006. The finest spatial scale at which data were available is Census Collection District (CCD) which is the standard geographic unit of collection and captures between 150 and 250 dwellings per CCD. At each census, Collection Districts may be redesigned to accommodate growth in population or to conform to other administrative data. To enable comparison between each census, non-populated areas were removed from each CCD by extracting National Park and State Forest areas. Where a CCD intersected with an estuary catchment boundary, the population in the remaining area of the CCD was proportioned by how much of the CCD fell inside and outside the catchment boundary.

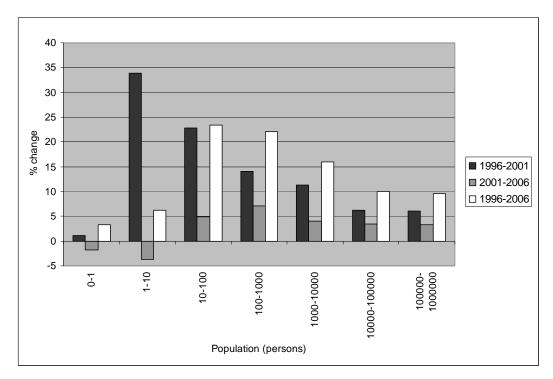
The 2006 population in each estuary catchment was normalised by comparing it to the total area of the catchment and calculating a population density.

9.7.2 Interpretation

The population density of people residing in an estuary catchment is a general measure of pressure placed on an estuary. Effects can include increased pollution loads in stormwater and sewage overflows, disturbance of riparian and foreshore vegetation, litter and general degradation of the environment.

The data distribution using the two options of equal percentiles and equal intervals is shown in Table 33. Using the equal percentile data bands, minimal catchment disturbance was assumed to occur for population density <1.5 head/km².

Pressure	Equal percentiles	(head/km²)	Equal intervals (head/km ²)				
Score	Data band	No. of estuaries	Data band	No. of estuaries			
5	0 - <1.5	37	0-<684	161			
4	1.5 - <9.0	37	684 - <1367	12			
3	9.0 - <40.7	36	1367 – <2051	5			
2	40.7 - <264.1	37	2051 - <2735	4			
1	264.1 – 3419	37	2735 – 3419	2			


Table 33: Data distribution for population density

9.7.3 Trend

The total population across all estuary catchments in each of the three census years was:

- for 1996: 4,864,849 persons or 38.3 persons/km² (representing 80.6 per cent of the total population of NSW)
- for 2001: 5,183,414 persons or 40.8 persons/km² (81.3 per cent of NSW)
- for 2006: 5,366,126 persons or 42.2 persons/km² (82.1 per cent of NSW).

The increase between each census was 6.5 per cent and 3.8 per cent relative to the 1996 census for a total increase of 10.3 per cent over the ten-year period. The increase in total NSW population from the 1996 census of 6,038,631 persons was 5.5 per cent and 2.8 per cent for a total increase of 8.3 per cent over the ten-year period. A population shift to coastal catchments is evident with the increase in the proportion of population across NSW living in coastal catchments increasing from 80.6 per cent to 82.1 per cent between 1996 and 2006. A breakdown in the population increase by catchment area (Figure 33) indicates higher variability in population for smaller catchments with even some reductions recorded. This reduction may be real or an artifact of the method used to proportion population in CCDs intersecting with catchment boundaries.

Figure 33: Population change in estuary catchments

9.8 Freshwater flow

9.8.1 Data sources

Data were collected for two variables: change in freshwater inflows from catchment clearing and the quantity of licenced water extraction.

There are 78 flow gauging stations operating and maintained by the NSW Office of Water in the freshwater streams draining 37 estuary catchments. The 2CSalt model was developed to provide water and salt inputs to regulated river models (Stenson et al. 2005) and has been extensively tested and applied within the Murray–Darling Basin. It can quantify surface and subsurface flows of water and salt and is able to predict the impacts of land-use change at a catchment scale. The model was applied to all 184 estuary catchments and calibrated using data from the 78 flow gauges (Littleboy et al. 2009). The output from the model is a monthly time series of water and salt generation to streams. Base flows, surface flows and groundwater flows are provided. Further disaggregation of flows into daily time series for generating flow duration curves is not possible.

Indicators of flow and pollutant export (sediments and nutrients) can not be normalised in the same manner as new pressures that did not exist prior to European settlement, such as land clearing or population. Flow and sediment and nutrient inputs can be assessed on the basis of the size of change between pre-European conditions and current day land-use. For flows, components of the flow regime that are significant to estuary function should be identified and quantified through hydrological modelling at suitable spatial and temporal scales.

For the Sustainable Rivers Audit of freshwater streams, indicators reported include changes in high-flow events, low-flow and zero-flow events, flow variability, seasonality and gross volume both as a mean and a median annual discharge (Davies et al. 2008).

For estuaries, the WSP process adopted two measures (Harris et al. 2008):

- The ratio of peak daily demand compared to low flows, defined as the 80th percentile, of the critical month
- The sensitivity of the estuary to changes in freshwater flows which was defined as a function of catchment and estuary area. Small intermittent systems were the most sensitive.

Both these measures are focused specifically on managing extraction of water by users during periods of low flow rather than stress arising from changes to all components of the flow regime. Also, flow duration curves are not available for all estuary catchment streams.

As a gross measure of impact on estuary water balance, the indicator adopted was the percentage increase in mean annual flow (MAF) above the pre-European settlement MAF. Future modelling and assessment may uncover additional metrics to better represent ecologically significant changes to flow regimes.

For water extraction licences, data on annual entitlements for streams draining to an estuary were extracted from the Licencing Administration System database administered by the the NSW Office of Water. The annual entitlements for all streams in an estuary catchment were summed and normalised by comparison with the mean annual flows summed for all streams in the estuary catchment.

9.8.2 Interpretation

Freshwater flow into estuaries affects salinity levels, flushing time, aquatic plant distributions, migration and spawning of aquatic animals, frequency of estuary mouth openings and fish catches. These characteristics are all modified by catchment clearing which increases the frequency and intensity of rainfall runoff causing a change to the quantity and timing of ecologically significant freshwater inflows to the estuary, catchment and river bed/bank erosion and polluted runoff. Extraction of water can have similar effects to changes in catchment hydrology but particularly during periods of low flow when extraction as a proportion of flow is greatest.

The data distribution for increases to pre-European settlement freshwater flows using the two options of equal percentiles and equal intervals is shown in Table 34. Using the equal interval data bands, minimal change to catchment streams was assumed to occur for freshwater flow increases of <3.9 per cent of MAF.

Pressure	Equal percentiles (% of MAF)	Equal intervals (%	Equal intervals (% of MAF)				
score	Data band	No. of estuaries	Data band	No. of estuaries				
5	-2.8 - <3.9	37	-2.8 - <29	125				
4	3.9 - <11.9	37	29 - <58	35				
3	11.9 - <21.9	36	58 - <87	12				
2	21.9 - <44.3	37	87 - <116	6				
1	44.3 – 142.2	37	116 – 142	6				

Table 34: Data distribution for freshwater flow increases

The data distribution for water extraction using the two options of equal percentiles and equal intervals is shown in Table 35. Using the equal interval data bands, minimal change to catchment streams was assumed to occur for water extraction <6.3 per cent of mean annual flow.

Pressure	Equal percentiles	(% of MAF)	Equal intervals (% of	MAF)	
score	Data band	No. of estuaries	Data band	No. of estuaries	
5	0-<0.2	19	0 - <6.3	173	
4	0.2 - <0.8	19	6.3 - <12.7	4	
3	0.8 - <1.6	19	12.7 – <19.0	2	
2	1.6 - <3.7	19	19.0 - <25.4	3	
1	3.7 – 31.7	20	25.4 – 31.7	2	

Table 35: Data distribution for water extraction

9.9 Sediment input

9.9.1 Data sources

Literature reviews were undertaken to establish typical event mean concentrations of TSS exported from the primary land-uses within coastal catchments.

To estimate both sediment and nutrient exports from each catchment, the freshwater surface flows generated for eight of the nine hydrological land-use classes from the 2CSalt modelling were multiplied by measured (median) sediment and nutrient concentration data obtained from the published scientific literature or from past OEH monitoring projects. The 'other' land-use class was excluded from the calculations as it represented 'river', 'sand' or 'wetland'. This multiplication produced annual sediment and nutrient load exports for each catchment.

Concentration data are expressed as event mean concentration (EMC), which is equivalent to the mean concentration of sediments or nutrients in runoff from a rain event. A search of the literature (publications available between the 1990s and June 2008) for local EMC data produced a total of only 25 relevant publications, which are listed separately at the end of the References section. The results demonstrate not only the paucity of EMC data in Australia but also the large variation in EMCs for various land-use types. To account for the limited and large variation in the EMC data, bootstrap techniques (Monte Carlo random sampling of the original data to produce a new data set [Baginska et al. 2003]) were used to derive EMC median, means and confidence intervals for each land-use type as shown in Table 36. Median values were adopted.

	EMC for TSS (mg/L)								
Land-use	Median	Mean	95% confidence in	terval					
Crops	200								
Dryforb	2972								
Forest	13.5	13.5	11.0	16.0					

 Table 36:
 Typical EMCs for TSS in catchment runoff

	EMC for TSS (m	EMC for TSS (mg/L)								
Land-use	Median	Mean	95% confide	ence interval						
Grazing	18.0	18.3	12.0	25.0						
Irrigated pasture	2972									
Urban	63.3	67.3	5.3	129						
Unsealed roads	900	1169	710	2625						

A second source of sediment input is point source discharges from sewage treatment plants (STPs) directly into estuaries or their catchments. Discharges from STPs and from sewage overflow points are licensed by OEH and details stored on the Integrated Statutory Environmental Management System database. Data are available on actual, weighted, agreed and assessable load defined as follows (DECC 2009b):

- Assessable load is the lowest of the actual, weighted or agreed load and is used to calculate fees
- Actual load of a pollutant is the annual mass in kilograms released into the environment from the potential emission sources
- Weighted load of a pollutant is the actual load adjusted in recognition of practices that reduce environmental harm without reducing the actual pollutant loads
- Agreed load is a load that will be achieved through future improvements as part of a Load Reduction Agreement.

Loads were available for discharges to enclosed waters (waters other than estuarine or open coastal), estuarine waters (tidal and a mean range greater than 800 mm) and open coastal waters (Pacific Ocean) as defined in DECC (2008).

Assessable loads are also available from the OEH public register on licences, applications and notices issued under Section 308 of the *Protection of the Environment Operations Act 1997* [www.environment.nsw.gov.au/prpoeo/licences.htm].

The discharge locations were supplied as text-based descriptions which were manually converted into latitude and longitude coordinates with the assistance of regional licensing officers where required. The final coordinates were plotted as a spatial layer to visually confirm that the discharge points were located in a catchment stream or the tidal waterway of an estuary.

At the time of accessing the database, data were available generally for the years 2001 to 2007. Data from the latest year of records were used to quantify STP point source loads discharging into estuaries. These loads were summed with the diffuse source loads to give the total annual TSS load.

9.9.2 Interpretation

Sediment inputs are generated by soil erosion in catchments disturbed by human activity as well as riverbank and shoreline erosion. Coarse sediment settles out along river beds, floodplains and at tributary mouths while finer suspended sediment fills bays and central basins and reduces water clarity. The flows from the 2CSalt hydrology models were combined with the EMCs of TSS and summed with the sewage discharge loads to estimate the percentage increase in the quantity of

TSS exported on an annual basis for current land-use compared to an undisturbed catchment condition.

The data distribution using the two options of equal percentiles and equal intervals is shown in Table 37. A third more subjective assessment was made using expert opinion on breakpoints in the relationship between percentage increase in TSS and turbidity scores. These may provide ecologically relevant thresholds which will need testing when further data and analysis become available. Using the subjective assessment data bands, minimal change to catchment streams was assumed to occur for sediment inputs showing <10 per cent increase above natural.

	Equal percentil (% increase)	es	Equal intervals (% increase)		Subjective assessment (% increase)		
Pressure score	Data band	No. of estuaries	Data band	No. of estuaries	Data band	No. of estuaries	
5	-5.5 – <15.6	37	-5.5 – <2120	174	-5.5 – <10	31	
4	15.6 - <75.3	37	2120 - <4240	5	10 - <40	23	
3	75.3 - <185	36	4240 - <6360	1	40 - <80	23	
2	185 – <497	37	6360 - <8479	2	80 - <600	79	
1	497 – 10594	37	8479 – 10594	2	600 – 10594	28	

 Table 37:
 Data distribution for sediment exports

9.10 Nutrient input

9.10.1 Data sources

As for sediment inputs, literature reviews were undertaken to establish typical EMCs of TN and TP exported from the primary land-uses within coastal catchments. The median concentrations adopted for TN and TP are shown in Table 38 and Table 39 respectively.

	EMC for TN (mg/L)			
Land-use	Median	Mean	95% confidence interval	
Crops	2.39			
Dryforb	31.9			
Forest	0.65	0.66	0.59	0.71
Grazing	1.58	1.58	1.39	1.8
Irrigated pasture	10.45	10.64	5.2	14.6
Urban	2.05	1.9	1.0	2.32
Unsealed roads	12.17			

 Table 38:
 Typical EMCs for TN in catchment runoff

	EMC for TP (mg/L)				
Land-use	Median	Mean	95% confide	ence interval	
Crops	0.32				
Dryforb	1.81				
Forest	0.04	0.04	0.03	0.04	
Grazing	0.21	0.21	0.16	0.27	
Irrigated pasture	4.5	4.53	3.6	4.9	
Urban	0.38	0.37	0.25	0.47	
Unsealed roads	1.1				

Table 39: Typical EMCs for TP in catchment runoff

A process identical to that used for generating sediment discharge data from sewage treatment plants was used to quantify annual STP nutrient discharge loads.

9.10.2 Interpretation

Nutrient inputs are also associated with catchment disturbance as well as fertiliser application, effluent discharges and urban stormwater. Excess nutrients can lead to blooms of microscopic algae (phytoplankton), increased growth of epiphytic algae, loss of submerged vegetation and the growth of macroalgae leading to changes in habitats and the structure and function of estuarine food webs. As for sediment inputs, the flows from the 2CSalt hydrology models were combined with the event mean concentrations of TN and TP and summed with the sewage discharge loads to estimate the percentage increase in the quantity of nutrients exported on an annual basis for current land-use compared to an undisturbed catchment condition. However, as algal growth in estuaries is generally limited by the supply of nitrogen although this can vary between systems, only the TN increase has been used as a pressure.

The data distribution for TN using the two options of equal percentiles and equal intervals is shown in Table 40. As for sediment inputs, a third more subjective assessment was made using expert opinion on breakpoints in the relationship between percentage increase in TN and chlorophyll a scores. These may also provide ecologically relevant thresholds which will need to be tested. Using the subjective assessment data bands, minimal change to catchment streams was assumed to occur for TN inputs showing <10 per cent increase above natural.

	Equal percentiles (% increase)		Equal intervals (% increase)		Subjective assessment (% increase)	
Pressure score	Data band	No. of estuaries	Data band	No. of estuaries	Data band	No. of estuaries
5	-14.8 - <20.7	37	-14.8 - <479	172	-14.8 - <10.0	26
4	20.7 - <67.6	37	479 – <959	7	10.0 - <50	33
3	67.6 - <140	36	959 - <1438	1	50 - <150	57
2	140 - <242	37	1438 - <1917	2	150 - <400	52
1	242 – 2382	37	1917 – 2382	2	400 – 2382	16

 Table 40:
 Data distribution for nutrient exports

9.11 Disturbed habitat

9.11.1 Data sources

There were a number of variables with data available that were considered for inclusion as metrics in this indicator:

• Foreshore structures – licences are issued by the Crown Lands Division of the Department of Primary Industries for any foreshore structures on Crown Land above and below the Mean High Mark around estuaries. NSW Maritime administers licences in Sydney Harbour, Newcastle Harbour, Botany Bay and Port Kembla. The licences are identified in a GIS layer as either a point, line or area feature. Depending on the type of foreshore structure, typical realistic estimates were adopted of the area and length occupied by each of the point, line and area features as shown in Table 41.

Structure type	Structure type		Average structure dimension		
Code	Description	Width (m)	Length (m)	Area (m ²)	
ACC	Access structure	1	10	10	
BDG	Miscellaneous building	3	3	9	
BTH	Berth	3	10	30	
CHL	Channel or canal	2	25	50	
CML	Commercial building	10	10	100	
CMY	Community building	8	8	64	
JTY	Jetty	1.5	10	15	
LND	Land reclamation	6	1.5	9	
PLN	Pipe or power line	0.1	10	1	
PLS	Piles	2	2	4	
PLT	Platform	3	3	9	

 Table 41:
 Foreshore structure dimensions

Structure type		Average structure dimension		
PMP	Pump or bowser	1	1	1
RMP	Ramp	3	3	9
SPL	Swimming pool or enclosure	3	8	24
SPT	Sporting/recreation structure	5	5	25
STR	Storage structure	3	3	9
SWL	Seawall	10	1	10
SWY	Slipway	3	5	15
USG	Underground storage	1	1	1
UTL	Utility structure	3	3	9
WHF	Wharf/marina/dock	5	20	100

The foreshore structure length estimates were used to calculate a metric based on the proportion of estuary perimeter occupied by foreshore structures

- Aquaculture leases leases and permits are issued by DPI for aquaculture such as oyster and mussel farming. Recognised Aquaculture Sites (RAS) where a lease is or has been in place were spatially mapped by DPI over the period 1996 to 2000. The area of aquaculture was normalised by comparison with the total estuary surface area
- Barriers to tidal flow an inventory was prepared by DPI on impediments to tidal flow in estuarine fish habitats (Williams et al. 1996). The length of tributary isolated from tidal influence and hence significance of each impediment was not estimated so this metric was not used. However, the tidal limit mapping (DNR 2006) indicates when the tidal limit is a weir so assessments could potentially be made in the future
- Areas of *Caulerpa Taxifolia* infestation selected estuaries have been mapped by DPI where *C. taxifolia* has been sighted and reported. There is no comprehensive survey available of the potential for *C. taxifolia* presence in all estuaries across NSW. The *C. taxifolia* area was normalised by comparison with the open water including seagrass area (excluding mangrove and saltmarsh) of each estuary
- Estuary area open to commercial or recreational fishing closure of part or all of the waterway area of an estuary is regulated by DPI and is available as a spatial layer. The estuary area open to recreational and commercial fishing can be normalised by the total estuary surface area
- Riparian vegetation extent mapping of the presence or absence of woody and non-woody vegetation in a 30 m buffer either side of catchment streams, of third order and above, and around the estuary foreshores has been completed by the NSW Office of Water (Garlapati et al. 2010). The binary layer is based on a 25 m grid size corresponding to the Landsat imagery pixel size used in the SLATS methodology to generate the NSW Interim Native Vegetation Extent dataset.

Additional analysis was carried out using a nominal buffer width of 100 m around the estuary as this width was viewed as more representative of the functions of the foreshore zone. These include filtering overland flow and improving water quality; protection against bank erosion

from wind, currents or boat wakes and providing a food source and habitat for estuarinedependent fauna including mammals, reptiles and birds. In addition, a 100 m wide buffer improves the accuracy of the assessment using a 25 m pixel size. Buffering commenced from the outermost extent of the estuary perimeter so that the buffers surrounding any mangrove and saltmarsh communities were also captured.

The results of this work were inconclusive. While there was a weak negative correlation between the extent of woody vegetation and percentage of cleared land in the catchment, the variability in woody vegetation extent for relatively pristine catchments was high (from 100 per cent to less than 70 per cent). Part of this may be attributed to the presence of heath and other low non-woody vegetation. However, if the woody vegetation extent was to be further partitioned to native and non-native the extent of native woody vegetation may be even lower than 70 per cent. Garlapati et al. (2010) created a secondary product called the Hybrid Riparian Native Vegetation Extent dataset which consists of 10 different vegetation classes. It was derived from interim foliage projective cover (FPC) and includes 'native non-woody', 'native woody', 'non-native non-woody', 'non-native woody' classes. Further investigation is required to optimise the use of these data for a riparian vegetation extent layer in the estuaries theme. The feasibility of using existing land-use mapping should also be examined.

The presence or absence of vegetation will be normalised by the total area contained within the 100 m buffer and the percentage of riparian vegetation removed adopted as the metric. Other metrics could be investigated for use such as continuity along the water-edge, connectivity and degree of fragmentation.

9.11.2 Interpretation

Disturbed habitat can arise from removal of foreshore vegetation, placement of foreshore structures such as reclamation walls, jetties, moorings etc., aquaculture leases particularly over seagrass beds, barriers such as weirs in the upper reaches of tidal tributaries, presence of the invasive seaweed *Caulerpa taxifolia*, and trawling for fish, prawns and molluscs. Collectively these activities have a range of impacts on the foreshore, inter-tidal zones and estuary bed that can change the structure and condition of aquatic habitats.

Currently data on only the presence of foreshore structures and aquaculture leases have been used. However, these two disturbances are not ubiquitous to all estuaries as aquaculture is restricted to estuaries continuously open to the ocean, and they both tend to occur in larger systems. When the data become available, a more reliable measure of habitat disturbance across all estuaries will be riparian vegetation presence/absence which will need to be weighted higher than other metrics. To some extent it also captures foreshore structures for which clearing of the riparian buffer often occurs.

The data distribution for foreshore structures using the two options of equal percentiles and equal intervals is shown in Table 42. Using the equal interval data bands, minimal change to aquatic habitats was assumed to occur for foreshore structures occupying <4.1 per cent of the estuary perimeter.

Pressure	Equal percentiles (% of perimeter)		Equal intervals (% of perimeter)	
score	Data band	No. of estuaries	Data band	No. of estuaries
5	0.008 - <0.2	18	0.008 - <4.1	68
4	0.2 - <0.8	17	4.1 - <8.2	13
3	0.8 - <1.5	17	8.2 - <12.3	0
2	1.5 – <4.2	17	12.3 – <16.4	2
1	4.2 – 20.5	18	16.4 – 20.5	4

Table 42: Data distribution for foreshore structures

The data distribution for foreshore structures using the two options of equal percentiles and equal intervals is shown in Table 43. Using the equal interval data bands, minimal change to aquatic habitats was assumed to occur for aquaculture leases occupying <4.9% of the total estuary area.

Pressure	Equal percentiles (% of area)		Equal intervals (% of area)	
score	Data band	No. of estuaries	Data band	No. of estuaries
5	0.1 - <0.6	10	0.1 - <4.9	27
4	0.6 - <2.8	9	4.9 - <9.9	11
3	2.8 - <5.1	9	9.9 - <14.8	3
2	5.1 – <8.3	9	14.8 - <19.8	1
1	8.3 – 24.8	9	19.8 – 24.8	4

 Table 43:
 Data distribution for aquaculture leases

To give an overall score for the disturbed habitat indicator, the scores for both metrics were summed and averaged with rounding up to the next highest integer (lower pressure) where required.

9.12 Tidal flow

9.12.1 Data sources

Data were collected for two variables: the presence of one or more breakwaters or training walls at the entrance of permanently open estuaries and the level at which intermittently open estuaries were manually opened. Aerial photography was used to detect whether an entrance was trained and whether the rock protection occurred on both sides. For artificially opened entrances, coastal councils and OEH regional offices were contacted for existing records and/or personal knowledge of the level at which the entrance was opened.

9.12.2 Interpretation

Tidal flow can be affected by breakwaters or training walls built to keep estuary entrances open and the artificial opening of lagoon entrances for flood mitigation, water quality, fish and prawn recruitment and other purposes. Both result in an increase in salinity levels, tidal ranges and flushing which can alter water quality and the distribution and composition of aquatic vegetation and animal species. Entrance training can also increase the erosion of inlet channels altering sediment processes and feeding back into even larger tidal ranges. Artificial opening at levels below natural can also lower frequency of inundation of peripheral vegetation such as saltmarsh and other macrophytes such as reeds.

A score of 5 was assigned to estuaries without training walls (149 estuaries), 3 for one wall (22 estuaries) and 1 for two walls (13 estuaries).

Artificial opening of estuaries was found to be occurring at levels of between 0.9 m and 3.4 m AHD. The data distribution for entrance opening using the two options of equal percentiles and equal intervals is shown in Table 44. Using the equal interval data bands, minimal change to aquatic habitats was assumed to occur for foreshore structures occupying <1.4 per cent of the estuary perimeter.

Pressure	Equal percentile	s (m AHD)	Equal intervals (m AHD)	
score	Data band	No. of estuaries	Data band	No. of estuaries
5	<1.4	7	<1.4	7
4	1.4 - <1.5	7	1.4 - <1.9	18
3	1.5 - <1.8	6	1.9 - <2.4	6
2	1.8 - <2.0	8	2.4 - <2.9	3
1	2.0 - 3.4	7	2.9 – 3.4	1

 Table 44:
 Data distribution for entrance opening level

As training and entrance opening are generally mutually exclusive (only occurs in three NSW estuaries), the overall score for the tidal flow indicator is whichever of the two metrics is applicable to an estuary. For the other three, the scores are averaged and rounded down to the next integer (higher pressure) where required.

9.13 Fishing

9.13.1 Data sources

Data on recreational fishing catches are available for very few estuaries. Annual commercial finfish and shellfish catch data are available from DPI for all estuaries open to the commercial fishing industry.

The annual fish catch was normalised by comparison with the total surface area of the estuary.

9.13.2 Interpretation

Fishing by recreational and commercial fishers removes finfish and shellfish from the estuarine ecosystem. Disturbance of habitats by boats, gear and people can also be associated with these activities.

The data distribution using the two options of equal percentiles and equal intervals is shown in Table 45. Using the equal interval data bands, minimal estuary disturbance was assumed to occur for fish catch <2.0 tonnes/km²/year.

Pressure	Equal percentiles (t/km²/yr)		Equal intervals (t/km²/yr)	
score	Data band	No. of estuaries	Data band	No. of estuaries
5	0 - <0.3	12	0-<2.0	25
4	0.3 - <1.2	9	2.0 - <3.9	12
3	1.2 - <3.3	11	3.9 - <5.9	11
2	3.3 - <5.2	13	5.9 - <7.8	5
1	5.2 – 9.8	12	7.8 – 9.8	4

 Table 45:
 Data distribution for fish catches

9.14 Climate change

For coastal ecosystems such as estuaries, sea level rise; changes in water temperature; alteration to freshwater inflows and subsequent delivery of nutrients and sediments; changes to circulation patterns, water quality and salinity regimes may result in fundamental shifts in ecosystem structure and functioning. The potential major physical and ecosystem impacts of climate change on coastal areas are summarised in Table 46. While some of this knowledge is available at a national scale, site-specific regional impacts have not been quantified to date. Climate change impacts have therefore not been included in the current SOC reports but it is anticipated some of these data will be available for the next round of reporting.

Potential physical and ecosystem effects	Potential secondary effects
Sea level rise	
Increased coastal erosion Increased inundation of coastal wetlands, floodplains, estuaries and low lying areas Landward displacement of shorelines, estuaries, wetlands and salt marshes Intrusion of saltwater into estuaries and groundwater systems Increased risk to coastal housing and infrastructure.	Infrastructure and economic activities Changes to property boundaries Loss of habitat values Changes in habitat distribution and land-use Changes to tidal ranges and circulation patterns Changes to sediment transport and deposition Changes to drainage patterns.
Increase in water and air temperature	
Latitudinal shifts in species distribution and abundance Changes in primary productivity Changes to hypoxia conditions (low DO) Changes to biogeochemical processes Changes to evaporation rates and water balances. Altered rainfall and runoff	Impacts on tourism and economic activity Changes to risk of disease and parasitism Joint effects of increased temperature, CO ₂ and acidification Impacts on aquaculture and commercial fishing.
Implications for flooding and erosion	Changes to coastal habitats.

Potential physical and ecosystem effects	Potential secondary effects
Changes to sedimentation and erosion rates	
Changes in sediment and nutrient loads	
Change to salinity regimes, residence times, stratification, circulation patterns, water balances and water quality.	
Altered wave climate	
Altered erosion and accretion	Changes to intertidal and rock foreshore
Altered beach alignment	ecosystems
Increased wave power.	Loss of sandy habitats.
Altered frequency and severity of extreme weathe	r events
Increased waves and storm surges	Implication for flooding and erosion
Altered cyclone zones	Implication for disaster relief.
Further damage to coastal infrastructure and ecosystems	
Increased flooding.	

9.15 Distribution of estuary pressures

A summary of all the raw pressure data for NSW estuaries together with the normalised pressure data are given in Appendix 20 and Appendix 21 respectively. The distribution of estuaries within each pressure scoring class is shown in Figure 34.

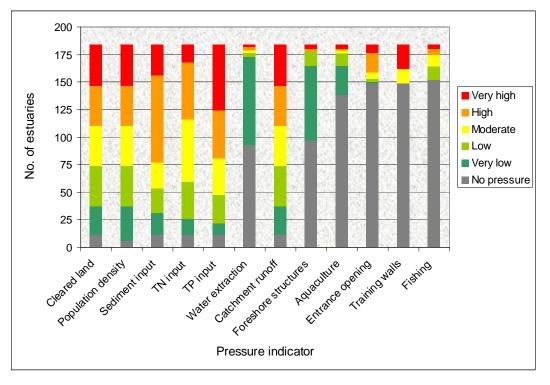


Figure 34: Distribution of estuaries within pressure scoring classes

9.16 Summary of condition and pressure scoring criteria

Shown in Table 47 following are the metrics and scoring classes for all condition and pressure indicators developed as part of the MER program and used in SOC reports.

9.17 Comparison of scoring classes

A compilation of pressure scoring classes developed by other organisations was undertaken from the following sources:

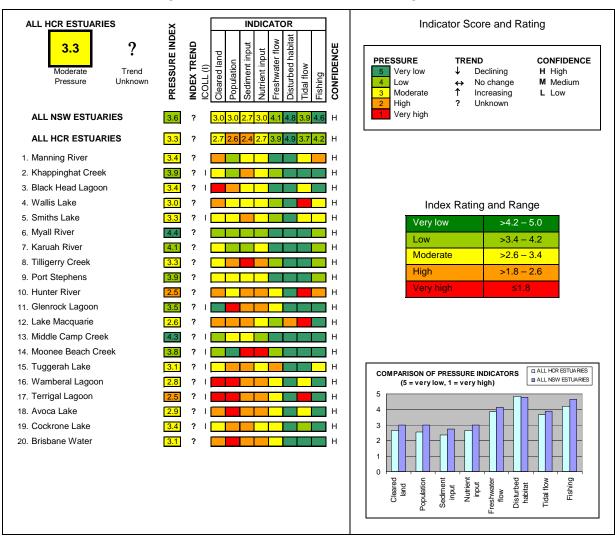
- A NSW Index of Estuary Condition was developed as a trial for the former Department of Land and Water Conservation (SKM 1999)
- A guide on the use of indicators for assessing estuarine health was prepared by the former Department of Infrastructure, Planning and Natural Resources (Laegdsgaard 2003)
- An integrated estuary assessment framework was prepared by the former CRC for Coastal Zone, Estuary & Waterway Management (Moss et al. 2006)
- A Stream and Estuary Assessment Program (SEAP) was prepared by the Queensland EPA (Scheltinga & Moss 2008).

A summary of the various pressure scoring classes is included in Appendix 22.

9.18 Estuary pressure ratings for NSW estuaries

Using the methods described in this chapter, ratings were generated for each of the pressure indicators as shown in Table 48, Table 49, Table 50 and Table 51 for all estuaries in each CMA region.

Condition indicator	Area	Estuary type	Metric	Min	Мах	Trigger value	2	Scoring intervals	Very good (5)	Good (4)	Fair (3)	Poor (2)	Very poor (1)
Chlorophyll a	Sampling	Lake	% compliance with trigger value (µg/l)	0.0	32.8	80 th %ile of reference	3.6	Expert ≥90	≥90	75-<90	50-<75	10-<50	<10
	sites or estuary	Lagoon		0.0) 29.7		2.0						
		Low river		0.0	8.4		2.3						
		Mid river					2.9						
		Up river					3.4						
Turbidity	Sampling	Lake	% compliance	0.5	17.0	80 th %ile of reference	5.7	Expert opinion	≥90	75–<90	50-<75	10-<50	<10
	sites or estuary	Lagoon	with trigger value (NTU)	0.5	36.1		3.3						
		Low river		0.3	90.0		5.0						
		Mid river					8.0						
		Up river					13.7					· · · · · ·	
Seagrass	Estuary	All	Extent change	100% loss	4221% gain	Significant loss	-10%	Expert opinion	>10%	+/-10%	>-10 to -40%	>-40 to -70%	>-70%
Mangrove	Estuary	All	Extent change	98% Ioss	872% gain	Significant gain or loss	±10%	Expert opinion	na	±10%	na	na	na
Saltmarsh	Estuary	All	Extent change	100% loss	7844% gain	Significant loss	-10%	Expert opinion	>10%	+/-10%	>-10 to -40%	>-40 to -70%	>-70%
Fish assemblages	Estuary	River Lagoon ICOLL	Index of 14 metrics	16	68	na	na	Equal intervals of normal distribution	60–68	49–59	36–48	25–35	16–24
All condition indicators	CMA or NSW	All	Average score	1	5	na	na	Equal intervals 1–5	>4.2	>3.4-4.2	>2.6-3.4	>1.8-2.6	≤1.8


Table 47: Summary of condition and pressure metrics and scoring classes

Pressure indicator	Area	Estuary type	Metric	Min Max Trigger value Scoring intervals		-	Very low (5)	Low (4)	Moderate (3)	High (2)	Very high (1)		
Cleared land	Catchment	All	% cleared	0	100.0	na	na	Equal percentiles	<7.5	7.5-<21.7	21.7-<39.1	39.1-<68.5	≥68.5
Population	Catchment	All	Head/km ²	0	3419	na	na	Equal percentiles	<1.5	1.5-<9	9–<41	41-<264	≥264
Sediments	Catchment	All	% increase from natural	-6	10594	na	na	Expert opinion	<10	10-<40	40-<80	80-<600	≥600
Nutrients - TN	Catchment	All	% increase from natural	-15	2382	na	na	Expert opinion	<10	10-<50	50-<150	150-<400	≥400
Freshwater flow - water extraction	Catchment	All	% annual flow	0	31.7	na	na	Equal intervals	<6.3	6.3-<12.7	12.7-<19.0	19.0-<25.4	≥25.4
- catchment runoff			% increase	-2.8	142			Equal percentiles	<3.9	3.9-<11.9	11.9-<21.9	21.9-<44.3	≥44.3
Disturbed habitat - structures	Estuary	All	% of perimeter	0.0	20.5	na	na	Equal intervals	<4.1	4.1-<8.2	8.2-<12.3	12.3-<16.4	≥16.4
- aquaculture			% of area	0.0	24.8			Equal intervals	<4.9	4.9–<9.9	9.9–<14.8	14.8-<19.8	≥19.8
Tidal flow - entrance opening	Estuary	All	Level m AHD	0.9	3.4	na	na	Equal intervals	≥2.9	2.4-<2.9	1.9-<2.4	1.4-<1.9	<1.4
- training walls			Number off	0	2				na	na	1: one side	na	2: both sides
Fishing	Estuary	All	Annual t/km ²	0	9.8	na	na	Equal intervals	<2.0	2.0-<3.9	3.9–<5.9	5.9-<7.8	≥7.8
All pressure indicators	CMA or NSW	All	Average score	1	5	na	na	Equal intervals 1–5	>4.2	>3.4-4.2	>2.6-3.4	>1.8-2.6	≤1.8

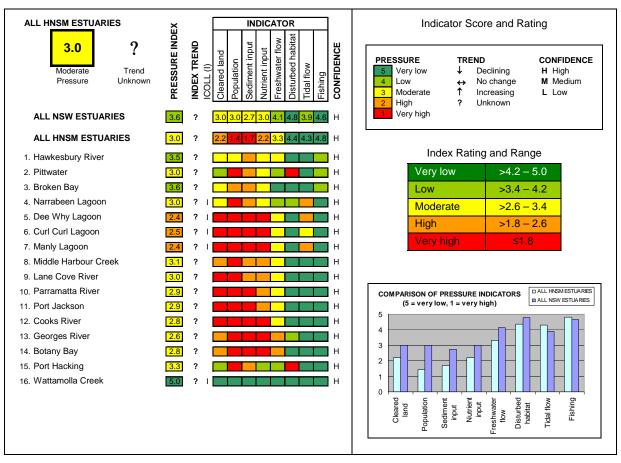

Note: minimum and maximum values are the median for all estuaries in a class and are provided as a single value for the full length of river class estuaries.

Table 48: Pressure rating of estuaries in Northern Rivers region								
ALL NR ESTUARIES		Indicator Score and Rating						
3.5 ? Low Trend Pressure Unknown	PRESSURE INDEX INDEX TREND ICOLL (1) Cleared land Population Sediment input Nutrient input Freshwater flow Disturbed habitat Trdal flow Fishing CONFIDENCE	PRESSURE TREND CONFIDENCE 5 Very low ↓ Declining H High 4 Low ↔ No change M Medium 3 Moderate ↑ Increasing L Low 2 High ? Unknown						
ALL NSW ESTUARIES	3.6 ? 3.0 3.0 2.7 3.0 4.1 4.8 3.9 4.6 H	Very high						
ALL NR ESTUARIES	3.5 ? 2.8 2.8 2.2 2.7 4.1 4.9 3.5 4.6 H							
		<section-header><section-header><section-header></section-header></section-header></section-header>						
 Saltwater Creek (Frederickton) Korogoro Creek Killick Creek Goolawah Lagoon Hastings River Cathie Creek Duchess Gully Camden Haven River 	3.3 ? 1 H 3.9 ? 1 H 3.6 ? 1 H 4.9 ? 1 H 3.0 ? 1 H 3.3 ? 1 H 3.6 ? 1 H 3.6 ? 1 H 3.7 1 H H 3.0 ? 1 H 3.0 ? 1 H 3.0 ? 1 H							

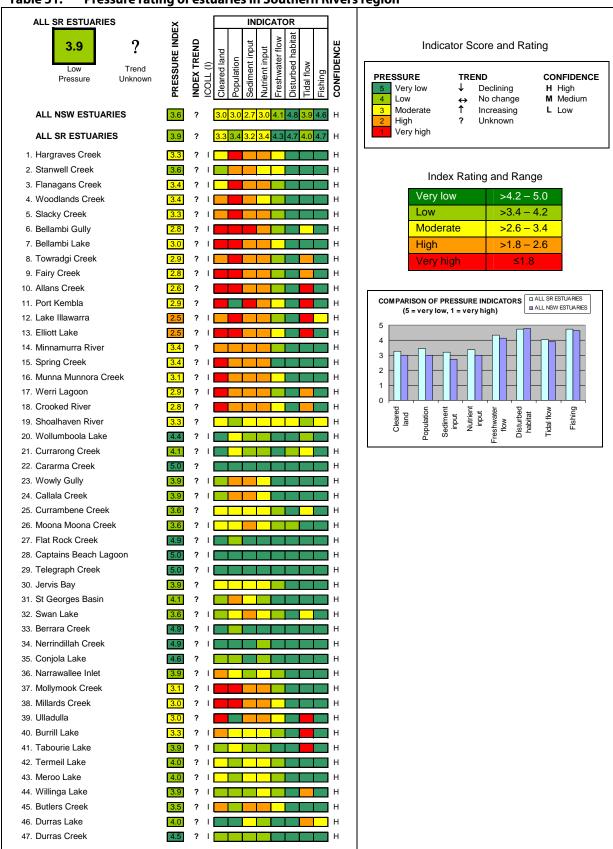

Table 48: Pressure rating of estuaries in Northern Rivers region

Table 49: Pressure rating of estuaries in Hunter-Central Rivers region

Table 50: Pressure rating of estuaries in Hawkesbury–Nepean and Sydney Metropolitan regions

Table 51: Pressure rating of estuaries in Southern Rivers region

48. Maloneys Creek	4.0 ?	
49. Cullendulla Creek	<mark>3.3</mark> ?	
50. Clyde River	4.5 ?	
51. Batemans Bay	4.6	Н
52. Saltwater Creek (Rosedale)	<mark>3.3</mark> ?	I H
53. Tomaga River	4.0 ?	
54. Candlagan Creek	3.9 ?	H
55. Bengello Creek	4.3 ?	I Пара на селото н
56. Moruya River	3.6 ?	
57. Congo Creek	2.9 ?	
58. Meringo Creek	3.8 ?	
59. Kellys Lake	3.8 ?	
60. Coila Lake	3.4 ?	
61. Tuross River	4.3 ?	H
62. Lake Brunderee	4.8 ?	I H
63. Lake Tarourga	5.0 ?	I THE REPORT OF
64. Lake Brou	4.5 ?	I са са с
65. Lake Mummuga	4.0 ?	
66. Kianga Lake	3.5 ?	
67. Wagonga Inlet	3.8 ?	
68. Little Lake (Narooma)	3.4 ?	
69. Bullengella Lake	3.8 ?	
70. Nangudga Lake	3.1 ?	
71. Corunna Lake	3.4 ?	
72. Tilba Tilba Lake	3.5 ?	
73. Little Lake (Wallaga)	3.4 ?	
74. Wallaga Lake	2.9 ?	
75. Bermagui River	3.1 ?	
76. Baragoot Lake	4.5 ?	
77. Cuttagee Lake	4.5 ?	
78. Murrah River	4.1 ?	
79. Bunga Lagoon	4.6 ?	
80. Wapengo Lagoon	4.5 ?	
81. Middle Lagoon	3.9 ?	
82. Nelson Lagoon	4.5 ?	
83. Bega River	3.5 ?	
84. Wallagoot Lake	4.4 ?	
85. Bournda Lagoon	4.6 ?	
86. Back Lagoon	<mark>3.3</mark> ?	
87. Merimbula Lake	3.0 ?	
88. Pambula River	4.3 ?	
89. Curalo Lagoon	3.6 ?	
90. Shadrachs Creek	5.0 ?	
91. Nullica River	4.9 ?	
92. Boydtown Creek	4.3 ?	
93. Towamba River	4.5 ?	
94. Fisheries Creek	5.0 ?	
95. Twofold Bay	4.5 ?	
96. Saltwater Creek (Eden)	5.0 ?	
97. Woodburn Creek	5.0 ?	
98. Wonboyn River	4.9 ?	
99. Merrica River	5.0 ?	
100. Table Creek	5.0 ?	
101. Nadgee River	5.0 ?	
102. Nadgee Lake	5.0 ?	

10. Condition and pressure indices

10.1 Developing an index

The monitoring program designed to report on estuary condition has focused on three key assemblages of plants and animals: algae (phytoplankton and macroalgae), vascular plants and fish in preference to other assemblages such as amphibians, birds, macroinvertebrates, and periphyton (organisms attached to submerged surfaces). Taken together the three assemblages represent important and valued aspects of an estuarine ecosystem's function (phytoplankton biomass), structure (aquatic habitat extent) and composition (fish and macrophyte species) and the science behind sampling and interpretation of these indicators is more advanced than for the other assemblages. As assemblage sometimes differ in their response to environmental stressors, having more than one assemblage provides sensitivity to a wider range of stressors and increases the power and confidence of the assessment (Karr 1999). Ideally, measures of condition include individuals, populations, communities, ecosystems and landscapes. Monitoring such biological endpoints integrates the effects of all forms of degradation caused by human actions and of associated environmental stressors such as changed water quality and habitat destruction (Harrison & Whitfield 2006).

Accordingly, the goal of an index of condition is to integrate a number of measures to provide a more balanced and complete assessment of ecosystem health. The index needs to include biological attributes that respond reliably to human activities, are minimally affected by natural variability, are cost-effective to measure and can be expressed as metrics able to be combined into an index. A process for developing an index would consist of:

- identifying estuarine flora and fauna
- developing biological metrics from species richness and composition, tolerance and intolerance to disturbances, trophic composition and population characteristics
- collecting data on human disturbance
- analysing redundancy between disturbance metrics
- testing biological response across the gradient of disturbance
- selecting the best performing metrics
- scoring metrics against a reference condition
- normalising between metrics and amongst estuary classes
- weighting metrics into an index responsive to disturbance.

10.2 Index of estuary condition

In recognition of the lack of clear causal relationships between biotic indicators and stressors resulting from human activity and, sometimes, the paucity of cost-effective data, developers of condition indices have often adopted the approach of including a range of abiotic measures that are known from studies to influence condition. Indices therefore become a mixture of condition and surrogate measures using physico-chemical condition, pressures, stressors and even impacts. Examples are:

- Victorian Index of Estuary Condition: hydrology, physical form, water quality, sediment, flora, fauna (Arundel at al. 2009)
- Victorian Index of Stream Condition: hydrology, physical form, water quality, streamside zone, aquatic biota (<u>www.vicwaterdata.net/vicwaterdata/data_warehouse_content.aspx?option=5</u>)
- National Framework for the Assessment of River and Wetland Health (FARWH): catchment disturbance, hydrological disturbance, water quality and soils, physical form, fringing zone, aquatic biota (NWC 2007)
- South African Estuarine Health Index: water quality, biology, aesthetics (Cooper et al. 1994).

For the purposes of this assessment, the FARWH definitions of 'integration' and 'aggregation' of indicators and indices have been adopted (NWC 2007). Integration denotes assembling different indicators or indices at a given scale into a combined index at the same scale while aggregation refers to assembling indicators or indices up to a larger spatial scale. The initial approach adopted for NSW has been to integrate the condition indicators based on biological assemblages into a single condition index with certain rules applied and the pressure and stressor indicators into a single pressure index. The rules applied to the condition index were as follows:

- Individual estuary condition:
 - The indicators were grouped into the three main types being eutrophication (chlorophyll a, macroalgae and turbidity), habitat (seagrass, mangrove and saltmarsh) and fish. An integration rule was set that at least one indicator from a minimum of two indicator groups must be populated, for example at least one eutrophication and habitat or fish indicator
 - Provided more than one indicator type was populated, the scores from all indicators were summed with equal weighting and averaged to give an overall estuary score
- Regional estuary condition: in recognition of the patchiness of some of the condition indicator datasets, an aggregation rule was set that for the Northern Rivers, Hunter–Central Rivers, Hawkesbury–Nepean and Sydney Metropolitan regions, the regional score would only be calculated if there were more than five estuaries in that region with individual estuary scores. For the Southern Rivers region, the minimum number of estuaries was set at 10 due to the relatively high total number of 102 estuaries
- State-wide estuary condition: similar to the regional aggregation, the minimum number of estuaries before a state-wide score is calculated was set at 20, about 10 per cent of the total number of estuaries.

Condition index scores and ratings were able to be calculated for 101 of the 184 estuaries using the above integration and aggregation rules and are shown in the individual regional SOC reports in Chapter 8 and summarised in Figure 35.

There are a number of improvements that could be made to the condition index:

- Investigate combining indicators into a eutrophication index and a habitat index similar to the concept of the fish index which includes 14 metrics
- Conduct multivariate statistical analysis to complement the current visual graphical assessment of stressor-response relationships and explore combinations of condition indicators and sub-indices that respond to gradients of disturbance

- Compare the current assessment with the expert approach to index development being trialled by CSIRO on behalf of the Estuary MER program
- To reduce the fish index variability, sites should be sampled twice before being assessed (Seegert 2000).

10.3 Index of estuary pressure

As there was limited redundancy between pressure and stressor indicators, the initial approach to integration and aggregation has been to equally weight indicators and calculate an average score. There has been some limited integration of metrics within individual indicators as described in earlier chapters but the value of further integration into sub-indices may result from statistical analysis.

Other datasets also gathered but not used in the current assessment are:

- percentage of catchment area with non-reticulated sewerage systems (eg septics)
- extent of recreational and commercial fish closures or, conversely, available for fishing
- extent of marine protected areas or, conversely, subject to activities banned in marine protected areas
- estuarine Beachwatch and Harbourwatch compliance data on bacterial contamination
- riparian vegetation extent (completed subsequent to the SOC 2010 reports).

Further analysis of these data could yield additional metrics suitable for incorporation in the pressure index, particularly riparian vegetation extent and other riparian metrics related to connectivity.

Both marine protected area extent and Beachwatch compliance data (from ocean beaches) have been reported under the Marine MER program to complement relatively sparse biological datasets on marine condition.

Pressure index scores and ratings were able to be calculated for all 184 estuaries and are shown in the individual regional SOC reports in Chapter 9 and summarised in Figure 36.

10.4 Confidence levels

A system was developed and applied for rating confidence in the data on water quality. Seven criteria were defined and applied to the available data. Ideally, confidence would be reported for each indicator and perhaps an integrated score given for each estuary. However, in view of the number of data gaps in the condition report, it was decided to initially rate the confidence on the number of indicators for which data were available. When data were available for all seven condition indicators the confidence was rated 'high', four to six indicators 'medium' and three or less 'low'. In the future when more of the data gaps have been filled, it is proposed that the alternative system be used based on the confidence ratings for each individual indicator.

For the pressure indicators most of the data confidence is rated high except for the sediment and nutrient loads which are rated medium. As data are available for all indicators across all estuaries, a confidence level has been assigned on the basis of how many indicators have high, medium or low confidence. All indicators have the same datasets available, six of which are rated as high and two as medium confidence; therefore an overall rating of high has been assigned to all estuaries. This is the type of rating system that will be applied to the condition indicators in future.

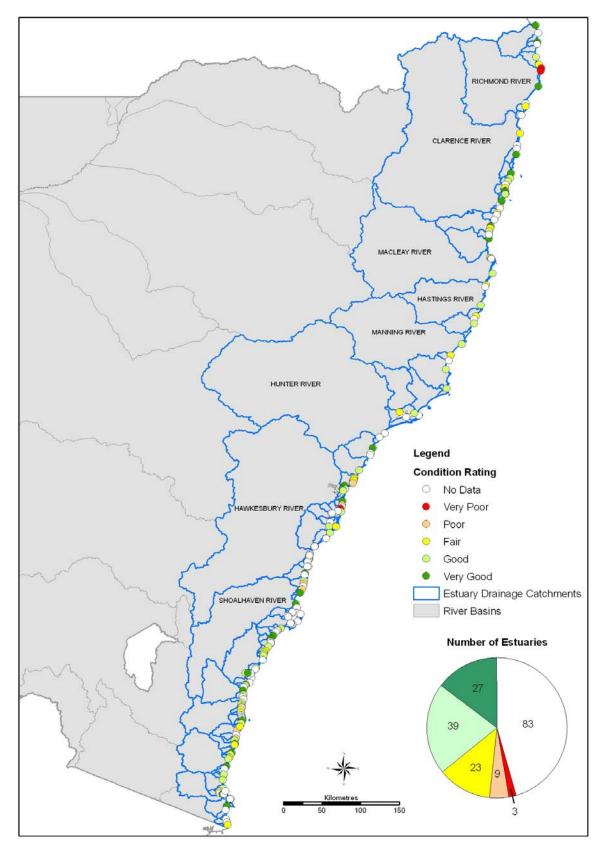


Figure 35: Condition ratings for NSW estuaries

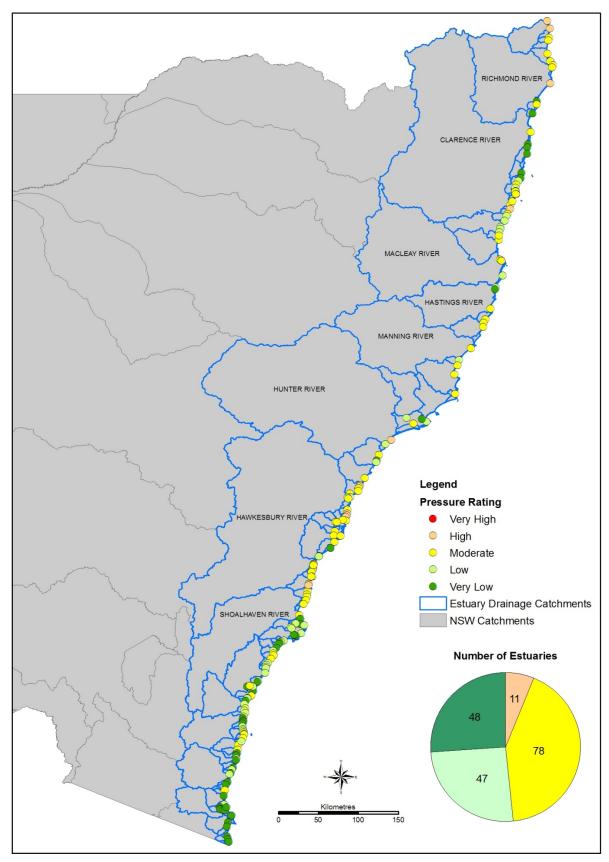
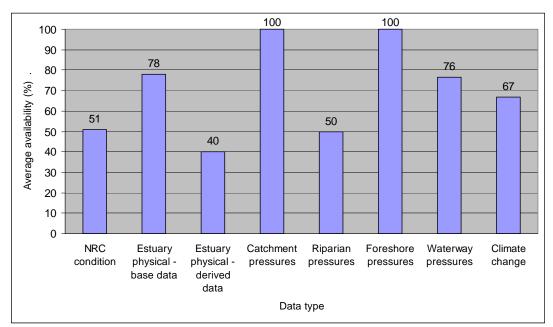


Figure 36: Pressure ratings for NSW estuaries


11. Data management

All data have been collected in accordance with standard methods and protocols detailed in Chapter 6 and Appendix 13 of this report.

Spatial datasets are held within corporate GIS systems of the two main natural resource agencies, OEH and DPI. Geo-referenced data such as water quality and fish data as well as pressure data are held in a mix of formats including geodatabases, Access databases and Excel spreadsheets. OEH is responsible for managing its data in accordance with the Natural Resource and Environment Information Management Framework and bringing datasets up to that standard.

A central element of the Framework is metadata which has been prepared for all datasets. Those metadata that are not already publicly available will be made available through the NSW Spatial Data Catalogue managed by LPI on behalf of the NSW Government. The Catalogue is located at <u>www.sdi.nsw.gov.au</u>.

Where required, licences will need to be negotiated with other data custodians such as local councils so that data can be accessed on an ongoing basis, analysed and publicly presented through the SOC reports. An SOC page has been developed on the OEH website for accessing SOC reports which is located at <u>www.environment.nsw.gov.au/soc/stateofthecatchmentsreport.htm</u>. Current development of the website will allow users to search for indicators, access metadata, download datasets and to display and compare condition and pressure assessments for different estuaries online. Links will be created to the national OzCoasts website located at <u>www.ozcoasts.gov.au</u> and to the OEH estuaries web page located at <u>www.environment.nsw.gov.au/estuaries</u>.

A summary of the availability of different data types for all 184 estuaries is shown in Figure 37.

Figure 37: Comparison of data availability by data type

In Table 52, data underpinning the SOC reports are listed together with the quantity of missing data, current location of data, custodians and whether the data are held in a corporate system readily available for access or are stored on a local server. Of the 44 datasets listed, 21 are or will be located in corporate systems with ready access; the other 23 are currently managed at a local level. A directory structure for scientific, including MER, data has been established within OEH to centralise and corporately manage all datasets for SOC reporting. OEH estuary datasets for the SOC 2010 reports are being migrated into the new directory structure.

Table 52:	Data availability and management
-----------	----------------------------------

		Missing val	ues			Corporate	
Attribute	Parameter	Frequency	Percent	Database	Custodian	or local	
Condition data	Chlorophyll a	100	54%	KEVIN	OEH	Local	
	Macroalgae	184	100%	EMERP	OEH	Local	
	Turbidity	131	71%	KEVIN	OEH	Local	
	Seagrass extent	38	21%	NSW EM	DPI	Corporate	
	Mangrove extent	37	20%	NSW EM	DPI	Corporate	
	Saltmarsh extent	37	20%	NSW EM	DPI	Corporate	
	Fish assemblages	107	58%	EFED	DPI	Corporate	
Physical base data	Coordinates	0	0%	EDB	OEH	Corporate	
	Geomorphology	õ	0%	EMERP	OEH	Local	
	Entrance condition	0	0%	EMERP	OEH	Local	
	Rainfall	0	0%	SILO	DERM	Corporate	
	Evaporation	0	0%	SILO	DERM	Corporate	
		0	0%	EDB	OEH		
	Estuary area		0%			Corporate	
	Bathymetry	131	71%	EMERP	OEH	Local	
	Tidal prism	29	16%	EMERP	OEH	Local	
	Tidal planes	54	29%	Report	OEH	Local	
	Tidal limits	37	20%	EDB	OEH	Corporate	
	Catchment area	0	0%	EDB	OEH	Corporate	
	Catchment above tidal limit	184	100%	EDB	OEH	Corporate	
	Salinity (time series)	96	52%	MHL/Councils	MHL	Corporate	
Physical derived data	Estuary volume	132	72%	EMERP	OEH	Local	
	Catchment runoff	0	0%	EMERP	OEH	Local	
	Dilution	132	72%	EMERP	OEH	Local	
	Freshwater replacement time	184	100%	EMERP	OEH	Local	
	Exchange efficiency	184	100%	EMERP	OEH	Local	
	Tidal flushing	29	16%	EMERP	OEH	Local	
Catchment pressure	Population	0	0%	EDB	OEH	Corporate	
	Land use	0	0%	EDB	OEH	Corporate	
	Runoff change	0	0%	EMERP	OEH	Local	
	Sediment load	ō	0%	EMERP	OEH	Local	
	Non-reticulated sewerage area	0	0%	EMERP	OEH	Local	
	Sewerage discharges	0	0%	ISEMS	OEH	Corporate	
	Nutrient load	0	0%	EMERP	OEH	Local	
Riparian pressure	Vegetation extent	184	100%	EDB	OEH	Corporate	
rapanan procouro	Water extraction	0	0%	LAS	OEH	Corporate	
Foreshore pressure	Structures	0	0%	DTDB	LPI	Corporate	
	Aquaculture	ő	0%	DTDB	DPI	Corporate	
Waterway pressure	Entrance works	0	0%	EMERP	OEH	Local	
riatorinay pressure	Entrance opening	0	0%	EMERP	OEH	Local	
	Harvesting	0	0%	ComCatch	DPI	Corporate	
		174	0% 95%		DPI		
Climata abanga	Invasive species	0	95% 0%	Caulerpa GIS EMERP	OEH	Corporate	
Climate change	Sea level rise	0	0% 0%			Local	
	Rainfall change	0 184	100%	EMERP	OEH	Local	
	Runoff change	104	100%	EMERP	OEH	Local	

Notes on databases:

ComCatch: Commercial fish catch statistics database

DTDB: Digital Topographic DataBase

EDB: Enterprise Database of spatial information

EFED: Estuarine Fish Ecology Database EMERP: Estuaries MER program spatial files and spreadsheets

ISEMS: Integrated Statutory Environmental Management System KEVIN: Keeping Estuarine Values Integrated for NSW water quality database

LAS: Licencing Administration System database

MHL: Manly Hydraulics Laboratory database

NSW EM: NSW Estuarine Macrophytes database

SILO: Meteorological database

Notes on custodians:

OEH: Office of Environment and Heritage **DPI: Department of Primary Industries** MHL: Manly Hydraulics Laboratory LPI: Land and Property Information DERM: Queensland Department of Environment and Resource Management

12. Recommendations for improvement

Within the timeframe and resources available to the Estuaries MER program, the best available data and analysis have been incorporated into the SOC reports. This represents three years of effort in collating and interpreting data through a number of pilot studies. While many data gaps were able to be filled, the process identified further data that would be valuable in extending the current analysis and interpretation. The data and analyses considered to be of most value are listed in the sections following.

Estuary definition

- 1. Finish surveys of the few remaining estuaries without tidal and mangrove limits
- 2. Compare and reconcile estuary water surface boundary from current mapping with photogrammetry associated with hydrosurveys
- 3. Develop better DEMs using bathymetric and topographic data and validate with merged water and macrophyte layers. Generate more accurate hypsometry for use in calculating estuary areas at various water levels
- 4. Use the recently completed digitising of estuary catchments into separate areas above and below the tidal limits to explore potential relationships between catchment pressures and stressors originating below the tidal limits and estuary health.

Catchment hydrology

- 5. Assess the validity of the regionalisation procedure for the 2CSalt models by systematically removing subsets of catchments
- 6. Examine the effect of catchment area on the modelling results
- 7. Refine and correct the catchment land-use areas for the 2CSalt rainfall runoff models and the sediment and nutrient export calculations including the Sydney Metropolitan Area where detailed land-use mapping was not available
- 8. Use daily rainfall records to interpolate catchment runoff and generate daily time series to assess:
 - a) the influence of rainfall runoff on variability in chlorophyll a and turbidity levels
 - b) additional metrics of hydrological stress, particularly under low flows, and including those developed for the WSP process
 - c) the effect of artificially opening lakes and lagoons at lower than natural breakout levels which can impact inundation regimes for peripheral vegetation, light levels for submerged aquatic vegetation and effectiveness of entrance scour and hence the period of opening and tidal flushing

The Queensland Department of Environment and Resource Management are modelling daily nutrient and pesticide loads using the WaterCAST software developed by the eWater CRC. Comparisons of methods and results should be considered

9. Use the models to assess the effect of climate change on catchment hydrology and the downstream impacts on estuarine ecosystems. The 2CSalt models developed for the coastal catchments are in the process of being re-run by OEH for related climate change projects.

Flushing time

- 10. Develop simple daily water balance models for intermittently open estuaries and calibrate with water level records available from the hydrometric network managed by OEH. Natural opening levels could be estimated using the work of Sheedy (1996). This will improve the estimates of flushing time particularly for smaller systems that open with minor rainfall. The models will benefit greatly from more accurate hypsometry flowing from improved DEMs of merged bathymetric and topographic data
- 11. Collate all available salinity data from custodians and:
 - a) calculate freshwater replacement time as a lower bound to water residence time
 - b) examine exchange efficiencies using:
 - i. time series of rainfall runoff and estuary salinity together with tidal prism to calculate flushing rate (Officer & Kester 1991)
 - ii. data on post-flood recovery rate of salinity
 - iii. DEMs to explore the role of entrance morphology in tidal flushing, for example, entrance inlet channel volume relative to tidal prism
 - iv. hydrodynamic models developed for a number of estuaries available from past projects, the results from which could be used in this assessment
- 12. Examine whether different methods of calculating water residence time should be applied to different estuary types.

Estuary classification

- 13. Investigate expanding the three class classification scheme of lake, river and lagoon into five classes of bay/drowned valley, lake, river, lagoon and creek to better represent ecological processes and reduce response variability within classes. This will require more detailed analysis of chlorophyll a data to validate relationships between nutrient load and response. Data analysis should separate ambient conditions from rainfall events, summer from annual chlorophyll a concentrations, diffuse from point source nutrient loads and the influence of entrance condition and river zonation. 2CSalt monthly flow outputs should be used to generate monthly nutrient loads to allow more detailed temporal analysis. Statistical approaches to classification such as cluster analysis and a statistical-Bayesian classification and regression tree (B-CART) should be explored
- 14. Use the effective loading concept developed by OEH for the Coastal Eutrophication Risk Assessment Tool (CERAT) to investigate whether load-response relationships can be improved within classes
- 15. Conduct exploratory analysis of data on physical and environmental drivers and their influence on the distribution and extent of seagrass, mangrove and saltmarsh and on the composition of fish assemblages. Factors to be analysed should include nutrient and sediment loads, soil types, regolith stability, water clarity, chlorophyll a, salinity, hypsometry, geomorphology and entrance condition
- 16. Confirm the geomorphological classification of Roy et al. (2001) and as extended by OEH for all 184 estuaries using statistical analysis and field checking where necessary.

Condition data

- 17. Contact those local councils that hold, but were unable to supply, water quality data for the SOC 2010 reports and gain access to the data. Also update data on water quality from all councils
- 18. Using all available data, the power analysis for the sampling designs should be revisited to refine the level of change required for changes to be significant
- 19. As turbidity is highly variable, protocols for field sampling need to be tightly defined and the role of water clarity in eutrophication processes further explored
- 20. Ongoing development of a suitable methodology for gathering data on macroalgae abundance is required
- 21. Mapping of macrophytes using remote sensing techniques is still at the development stage but should continue to be supported so that time series data can be acquired and analysed for trends through time
- 22. Further assessment of change between the two major surveys of macrophytes needs to be undertaken. Detailed time series mapping available for a limited number of estuaries should be used to determine a minimum patch size that was not mapped in the West et al. (1985) survey. Confidence in the change estimates may increase if the results from the detailed time series and the change data can be aligned
- 23. Initiate new time series mapping of macrophytes in a small number of estuaries to validate change estimates. Include estuaries in reference condition to partition natural variability from disturbance due to human activity
- 24. Additional historical data on fish assemblages from a number of projects are held by DPI. These data could be used for for analysis and refinement of reference conditions, threshold scoring criteria and sampling designs.

Reference conditions and scoring classes

- 25. Further explore measures of catchment disturbance, in addition to the increase in TN load, to improve stressor-response relationships
- 26. Investigate statistical methods for removing the biasing effect of sample size in calculating the trigger value of the 80th percentile of chlorophyll a and turbidity sampling in reference condition estuaries
- 27. Conduct multivariate statistical analysis of multiple stress gradients and biological responses to complement the current visual graphical assessment of stressor-response relationships. Investigate the potential for ecologically or biologically relevant thresholds to better define estuary health and how scoring of health might be linked to the thresholds.

Pressure indicators

- 28. Further investigate the use of riparian vegetation extent mapping and land-use mapping to create a metric representing the pressure of clearing vegetation in riparian zones along catchment streams and estuary foreshores
- 29. Incorporate data on riparian vegetation extent, and condition if available, along catchment streams and estuary foreshores into the disturbed habitat indicator and weight accordingly.

Investigate utility of other disturbed habitat indicators for which data are available such as barriers to tidal flow, Caulerpa taxifolia infestation and estuary area open to commercial or recreational fishing

- 30. Explore different ways of portraying and analysing catchment pressure data using various distance weighting measures to improve stressor-response relationships, for example:
 - a) Pressure originating above and below the tidal limits
 - b) Reducing the pressure with distance upstream of the tidal limit
 - c) Reducing the pressure with distance from the fluvial stream system
 - d) Reducing the pressure using a combination of distance from the fluvial stream system and decreasing stream order. Sub-catchments draining to first and second order streams have the least influence on pressure while those draining directly to the estuary have the most influence
- 31. Historical data on commercial fish catch are available from DPI and could be analysed for trends through time
- 32. Likewise, historical data on sewage treatment plant and overflow discharges could be analysed for trends but would not be expected to have a significant effect on total loads
- 33. In addition to the 2CSalt modelling of the effects of climate change on rainfall runoff patterns, investigate quantifying impacts of climate change into indicators suitable for SOC reporting
- 34. Assess whether the effects of climate change are evident in existing bio-physical data.

Index of estuary condition

- 35. Investigate combining indicators into a eutrophication index and a habitat index similar to the concept of the fish index which includes 14 metrics
- 36. Explore combinations of condition indicators and sub-indices that respond to gradients of disturbance
- 37. Compare the current assessment with the expert approach to index development being trialled by CSIRO on behalf of the Estuary MER program
- 38. To reduce the fish index variability, sites should be sampled twice before being assessed (Seegert 2000).

Index of estuary pressure

- 39. Other datasets also gathered but not used in the current assessment are:
 - o percentage of catchment area without reticulated sewerage
 - o extent of recreational and commercial fish closures or, conversely, available for fishing
 - extent of marine protected areas or, conversely, subject to activities banned in marine protected areas
 - o estuarine Beachwatch and Harbourwatch compliance data on bacterial contamination
 - riparian vegetation extent (completed subsequent to the SOC 2010 reports)

Further analysis of these data could yield additional metrics suitable for incorporation in the pressure index, particularly riparian vegetation extent and other riparian metrics related to connectivity and fragmentation.

Data management

- 40. Bring all estuary datasets created to support the SOC reports into corporate data systems
- 41. Make data accessible through the OEH and DPI websites and improve the functionality of data manipulation through further development of those sites including the application of Google Earth where appropriate.

Integration across themes

42. Other themes within the wider MER program are collating data and generating metrics that may be useful as pressures to the estuary theme, and conversely the estuary theme is generating metrics that may be useful to other themes (eg marine). These should be investigated in detail but might include measures of river health, soil condition particularly erosion and changes in native vegetation cover through time.

13. References

- Abal E, Cox W, Cullen P, Gawne B, Thom B & Wright T 2005, Scientific Peer Review Panel for Rivers, Wetlands and Estuaries, report to the Natural Resources Commission, unpublished.
- Adam P 1990, Saltmarsh Ecology, Cambridge University Press, Cambridge.
- Anstee JM, Booth EJ & Dekker AG 2000, Study on the remote sensing of estuarine macrophyte and saltmarsh vegetation on Wallis Lake, CSIRO Water from a Healthy Country Science Report for NSW DPI, 90 pp.
- ANZECC 2000, Australian and New Zealand guidelines for fresh and marine water quality, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand [www.mincos.gov.au/publications/national water quality management strategy].
- Arundel H & Mount R 2007, *National estuarine environmental condition assessment framework round table,* background briefing paper.
- Arundel H, Pope A & Quinn G 2009, *Victorian index of estuary condition, recommended themes and measures,* School of life and environmental sciences, Deakin University, 62 pp. [www.dse.vic.gov.au/ data/assets/pdf file/0006/97170/Final IEC report Feb09.pdf].
- Baginska B, Pritchard T & Krogh M 2003, 'Roles of land use resolution and unit-area load rates in assessment of diffuse nutrient emissions', *Journal of Environmental Management*, vol. 69, pp. 39–46.
- Barton JL 2006, 'Indicators of estuarine health in south-east Australian estuaries', PhD thesis, Flinders University, Adelaide.
- Barton J, Pope A, Quinn G & Sherwood J 2007, *Development of a methodology for assessing estuary pressures: relationships with catchment conditions. Stage 2 linking catchments to the sea – understanding how human activities impact on Victorian estuaries*, Milestone 3 report to the National land and Water Resources Audit: review and expand the Victoria-wide classification, unpublished.
- Bell FC & Edwards AR 1980, An environmental inventory of estuaries and coastal lagoons in New South Wales, Total Environment Centre, Sydney.
- Best M, Massey A & Prior A 2007, 'Developing a saltmarsh classification tool for the European water framework directive', *Marine Pollution Bulletin*, vol. 55, pp. 205–214.
- Borja A & Elliot M 2007, 'What does 'good ecological potential' mean, within the European Water Framework Directive?' *Marine Pollution Bulletin*, vol. 54, pp. 1559–1564.
- Bricker SB & Ferreira JG 2008, ASSETS eutrophication assessment: method and application, Land-Oceans Interactions in the Coastal Zone (LOICZ), 9 pp. [www.loicz.org/imperia/md/content/loicz/science/assets_eutropphication_assessment.pdf].
- Bricker SB, Clement CG, Pirhalla DE, Orlando SP & Farrow RG 1999, *National estuarine eutrophication* assessment: Effects of nutrient enrichment in the nation's estuaries, NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science. Silver Spring, MD, 71 pp. [http://ian.umces.edu/neea/pdfs/eutro_report.pdf].
- Bricker S, Ferreira JG & Pastres R 2007, 'Eutrophication assessment using ASSETS approach, application and results', Presentation to the Venice Water Authority meeting 3 December 2007 [www.eutro.org/presentations/VWA%20Seminar.pdf].
- Bricker SB, Ferreira JG & Simas T 2003, 'An integrated methodology for assessment of estuarine trophic status', *Ecological Modelling*, vol 169, pp. 39–60.

- Brooks RP, Wardrop DH, Thornton KW, Whigman D, Hershner C, Brinson MM & Shortle JS (eds.) 2006, Integration of ecological and socioeconomic indicators for estuaries and watersheds of the Atlantic Slope, final report to US EPA STAR Program, Agreement R-82868401, Washington, DC, prepared by the Atlantic Slope Consortium, University Park, PA, 96 pp. + attachments (CD) [www.asc.psu.edu/public/pubs/ Final%20Report AtlanticSlopeConsortium.pdf].
- BTG 2004a, Assessment of data requirements and availability to address natural resource condition and trend indicators – Part A: Project Report, Beaten Track Group Pty Ltd for the National Land and Water Resources Audit, 41 pp. [http://lwa.gov.au/files/products/national-land-and-water-resourcesaudit/er040798/er040798.pdf].
- BTG 2004b, Assessment of data requirements and availability to address natural resource condition and trend indicators Part B: Identification of data needs and potential datasets, Beaten Track Group Pty Ltd for the National Land and Water Resources Audit, 43 pp. [http://lwa.gov.au/files/products/national-land-and-water-resources-audit/er040799/er040799.pdf].
- Bucher D & Saenger P 1989, An inventory of Australian estuaries and enclosed waters, prepared for the Australian Recreational Sport Fishing Confederation and Australian National Parks and Wildlife Service, Centre for Coastal Management, seven volumes.
- Burgess R, Chancy C, Campbell D, Detenbeck N, Engle V, Hill B, Ho K, Lewis M, Kurtz J, Norberg-King T, Pelletier P, Perez K, Smith L & Snarski V 2004, *Classification framework for coastal systems*, Office of Research and Development, US EPA 600/R-04/061, 66 pp. [www.epa.gov/med/Prods Pubs/classification framework.pdf].
- Cappo M, Alongi DM, Williams DM & Duke N 1998, *A prospectus of opportunities for the FRDC 'Ecosystem Protection Program'*, Volume 2 Issue 1, Scoping review, Natural dynamics in fisheries habitats and environmental variability 2/3, Fisheries Research and Development Corporation, pp. 61–120.
- Connolly RM & Lee SY 2007, 'Mangroves and saltmarsh' in Connell SD & Gillanders BM (eds.), *Marine Ecology*, Oxford University Press, Melbourne, pp. 485–512.
- Cooper AG, Ramm AEL & Harrison T D 1995, 'The Estuarine Health Index: a new approach to scientific information transfer', *Ocean and Coastal Management*, vol. 25, pp. 103–141.
- Costa JE, Howes BL, Janik D, Aubrey D, Gunn E & Giblin AE 1999, Managing anthropogenic nitrogen inputs to coastal embayments: technical basis and evaluation of a management strategy adopted for Buzzards Bay, draft final, Buzzards Bay Project Technical Report, September 1999, 62 pp. [www.buzzardsbay.org/nitrmang/nitrmng.pdf].
- Creese RG, Glasby TM, G West, Gallen C & Williams RJ (in press), *Mapping the habitats of NSW estuaries, final report to the Hunter Central Rivers Catchment Management Authority*, NSW Fisheries Final Report Series No. 113, ISSN 1837-2112, 95 pp.
- Davies PE, Harris JH, Hillman TJ & Walker KF 2008, SRA Report 1: A report on the ecological health of rivers in the Murray–Darling Basin, 2004–2007, prepared by the Independent Sustainable Rivers Audit Group for the Murray–Darling Basin Ministerial Council, 376 pp.
 [www.mdbc.gov.au/ data/page/2260/SRA Report 1 June2008 small.pdf].
- DECC 2008, *Guide to Licensing Under the* Protection of the Environment Operations Act 1997 *Part B,* Department of Environment, Climate Change and Water NSW, Sydney, 89 pp. [www.environment.nsw.gov.au/resources/licensing/09207licenceguideB.pdf].
- DECC 2009a, *Estuarine Decision Support*, State Level Activity Natural Resource Management Project Final Report, DEC STR 0064 R2 (NAP/NHT2), Department of Environment and Climate Change NSW, 31 July 2009, unpublished.

- DECC 2009b, *Load Calculation Protocol* (June 2009) for use by holders of NSW environment protection licences when calculating assessable pollutant loads, Department of Environment, Climate Change and Water NSW, Sydney, 73 pp. [www.environment.nsw.gov.au/resources/licensing/09211loadcalcprot.pdf].
- DERM 2009, *Queensland water quality guidelines*, Version 3, ISBN 978-0-9806986-0-2, Department of Environment and Resource Management, Brisbane, 167 pp. [www.derm.qld.gov.au/environmental_management/water/queensland_water_quality_guidelines/queensland_water_quality_guidelines_2009.html].
- Detenbeck NE, Batterman SL., Brady VJ, Brazner JC, Snarski VM, Taylor DL, Thompson JA & Arthur JW 2000, 'A test of watershed classification systems for ecological risk assessment', *Environmental Toxicology and Chemistry*, US EPA, Mid-Continent Ecology Division, vol. 19, pp. 1174–1181.
- Dettman EH 2001, 'Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis', *Estuaries*, vol. 24, pp. 481–490.
- Devlin M, Painting S & Best M 2007, 'Setting nutrient thresholds to support an ecological assessment based on nutrient enrichment, potential primary production and undesirable disturbance', *Marine Pollution Bulletin*, vol. 55, pp. 65–73.
- Digby MJ, Saenger P, Whelan MB, McConchie D, Eyre B, Holmes N & Bucher D 1998, *A physical classification of Australian estuaries*, report prepared for the Urban Water Research Association of Australia by the Centre for Coastal Management, Southern Cross University, Lismore, NSW.
- DLWC 1997 Estuary inventory of New South Wales, Summary of the main 130 estuaries in NSW, Report no. 94099 Estuary Management Program, Department of Land and Water Conservation, Sydney, unpublished.
- DLWC 1998 Stressed Rivers Assessment Report, NSW State Summary 1998, HO/17/98, Department of Land and Water Conservation, Sydney, 52 pp.
- DNR 2006, *Survey of tidal limits and mangrove limits in NSW estuaries 1996 to 2005,* Report No. DNR 2006_0118, Commerce Report No. 03081, prepared by Manly Hydraulics Laboratory for the Department of Natural Resources, 116 pp.
- DPI 2008, Primefact 746 Mangroves, NSW Department of Primary Industries.
- Dyer KR & Taylor PA 1973, 'A simple segmented prism model of tidal mixing in well mixed estuaries', *Estuarine and Coastal Marine Science*, vol. 1, pp. 411–418.
- Edgar GJ, Barrett NS & Graddon DJ 1999, A classification of Tasmanian estuaries and assessment of their conservation significance using ecological and physical attributes, population and land use [http://eprints.utas.edu.au/1718/1/A Classification of Tasmanian Estuaries and Assessment of their Conservation Significance using Ecological and Physical Attributes, Population and Land Use..pdf].
- EHMP 2008, *Ecosystem Health Monitoring Program 2006–07 Annual Technical Report*, South East Queensland Healthy Waterways Partnership, Brisbane, 43 pp. [www.healthywaterways.org/ uploads/ehmp/filelibrary/200607_methods.pdf].
- Elosegui A, Pozo J & Orive E 1987, 'Plankton pulses in a temperate coastal embayment during the winterspring transition', *Estuarine, Coastal and Shelf Science*, vol. 24 pp. 751–764.
- Engle VD, Kurtz JC, Smith LM, Chancy C & Bourgeois P 2007, 'A classification of U.S. estuaries based on physical and hydrologic attributes', *Environmental Monitoring and Assessment* 2007, DOI 10.1007/s10661-006-9372-9, vol.129, pp. 397–412.
- Eyre B 2000, 'Regional evaluation of nutrient transformation and phytoplankton growth in nine riverdominated sub-tropical east Australian estuaries', *Marine Ecology Progress Series*, vol. 205, pp. 61–83.

- Eyre BD & Ferguson A.JP 2002, 'Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons', *Marine Ecology Progress Series*, vol. 229, pp. 43–59.
- Field SA, O'Connor PJ, Tyre A.J & Possingham HP 2007, 'Making monitoring meaningful', *Austral Ecology*, vol. 32, pp. 485–491.
- Garlapati N, Shaikh M & Dwyer M 2010, *Riparian vegetation extent for environmental monitoring, evaluation and reporting: Project report*, NSW Office of Water, Sydney, 50 pp.
- Gaughan D.J & Potter IC 1995, 'Composition, distribution and seasonal abundance of zooplankton in a shallow, seasonally closed estuary in temperate Australia', *Estuarine, Coastal and Shelf Science*, vol. 41, no. 2, pp. 117–135.
- Gilbert PM, Madden CJ, Boynton W, Flemer D, Heil C & Sharp J (eds.) 2010, *Nutrients in estuaries, a summary report of the national estuarine experts workgroup 2005–2007,* prepared under U.S. Environmental Protection Agency contract numbers 68-C-02-091 and EP-C-07-025, 188 pp [www.water.epa.gov/scitech/swguidance/standards/criteria/nutrients/upload/Nutrients-in-Estuaries-November-2010.pdf].
- Gillanders BM 2007, 'Seagrass' in Connell SD & Gillanders BM (eds.), *Marine Ecology*, Oxford University Press, Melbourne, pp. 457–484.
- Griffiths SP 2001, 'Factors influencing fish composition in an Australian intermittently open estuary. Is stability salinity-dependent?', *Estuarine, Coastal and Shelf Science*, vol. 52, pp. 739–751.
- Guo Q & Lordi GP 2000, 'Method for quantifying freshwater input and flushing time in estuaries', *Journal of Environmental Engineering*, vol. 126, no. 7, pp. 675–683.
- Hale J & Butcher R 2008, Summary and review of approaches to the bioregionalisation and classification of aquatic ecosystems within Australia and internationally, report prepared for the Department of Environment, Water, Heritage and the Arts, 73 pp.
- Harris E, Coates B, Muschal M & Whiting L 2008, *Determination of freshwater inflow requirements of estuaries for water sharing plans,* technical support document, Department of Water and Energy, unpublished.
- Harrison TD & Whitfield AK 2004, 'A multi-metric fish index to assess the environmental condition of estuaries', *Journal of Fish Biology*, vol. 65, pp. 683–710.
- Harrison TD & Whitfield AK 2006, 'Application of a multimetric fish index to assess the environmental condition of South African estuaries', *Estuaries and Coasts*, vol. 29, no. 6B, pp. 1108–1120.
- Heap A, Bryce S, Ryan D, Radke L, Smith C, Smith R, Harris P & Heggie D 2001, Australian estuaries & coastal waterways: a geoscience perspective for improved and integrated resource management, Australian Geological Survey Organisation, report to the National Land and Water Resources Audit, Theme 7: ecosystem health, 188 pp.
- Heinz Center 2008, *The state of the nation's ecosystems 2008. Measuring the lands, waters, and living resources of the United States*, The H. John Heinz III Center for Science, Economics and the Environment [www.heinzctr.org/Ecosystems.html].
- ISEWG 2005, *Suggested indicators for state-wide targets*, report to the Natural Resources Commission by the Independent Scientific Expert Working Group, unpublished.
- Karr JR 1999, 'Defining and measuring river health', Journal of Freshwater Biology, vol. 41, no. 2, pp. 221–234.
- Keough MJ & Jenkins GP 1995, 'Seagrass meadows and their inhabitants', in Underwood AJ & Chapman MG (eds.) *Coastal marine ecology of temperate Australia*, University of New South Wales, Sydney, pp. 221–39.

Ketchum BH 1983, 'Ecosystems of the World 26', Estuaries and Enclosed Seas, Elsevier, New York.

- Kurtz JC, Detenbeck ND, Engle VD, Ho K, Smith LM, Jordan SJ & Campbell D 2006, 'Classifying coastal waters: current necessity and historical perspective', *Estuaries and Coasts*, vol. 29, no. 1, pp. 107–123.
- Laegdsgaard P 2003, *Use of indicators for assessing estuarine health: a guide*, working draft, NSW Department of Infrastructure, Planning and Natural Resources, New South Wales Government, unpublished.
- Larkum AWD & West R.J 1990, 'Long term changes in seagrass meadows in Botany Bay, Australia', *Aquatic Botany*, vol. 37, pp. 55–70.
- Latimer JS & Kelly JR 2003, *Proposed classification scheme for predicting sensitivity of coastal receiving waters to effects of nutrients*, FY2003 Annual Performance Goal #2, From aquatic stressors framework and implementation plan for effects research in support of GPRA 2.2.3, US EPA, AED Contribution number AED-03-04-001.
- Littleboy M, Sayers J & Dela-Cruz J 2009, 'Hydrological modelling of coastal catchments in New South Wales', *Proceedings 18th World IMACS/MODSIM Congress*, Cairns, Australia, 13–17 July 2009.
- Longmore AR, Heggie DT, Flint R, Cowdell RA & Skyring GW 1999, 'Impact of runoff on nutrient patterns in northern Port Phillip Bay, Victoria', *AGSO Journal of Australian Geology and Geophysics*, vol. 17, pp. 203–210.
- Mazumder D, Saintilan N & Williams RJ 2005a, 'Temporal variations in fish catch using pop nets in mangrove and saltmarsh flats at Towra Point, NSW, Australia', *Wetlands Ecology and Management*, vol. 13, pp. 457– 467.
- Mazumder D, Saintilan N & Williams RJ 2005b, 'Comparison of fish catches using fyke nets and buoyant pop nets in a vegetated shallow water saltmarsh flat at Towra Point, NSW', *Wetlands (Australia)*, vol. 23, pp. 37– 46.
- Mazumder D, Saintilan N & Williams RJ 2005c, 'Fish assemblages in three tidal saltmarsh and mangrove flats in temperate NSW, Australia: a comparison based on species diversity and abundance', *Wetlands Ecology and Management*, vol. 14, no. 3, pp. 201–209.
- Mazumder D, Saintilan N & Williams RJ 2006, 'Trophic relationships between itinerant fish and crab larvae in a temperate Australian saltmarsh', *Marine and Freshwater Research*, vol. 57, pp. 193–199.
- McKee LJ, Eyre BD & Hossain S 2000, 'Transport and retention of nitrogen and phosphorus in the sub-tropical Richmond River estuary, Australia a budget approach', *Biogeochemistry*, vol. 50, pp. 241–278.
- Meehan AJ 1997, 'Historical changes in seagrass, mangrove and saltmarsh communities in Merimbula Lake and Pambula Lake', Honours thesis, Environmental Science, Faculty of Science, University of Wollongong, 109 pp.
- Meehan AJ, Williams RJ & Watford FA 2005, 'Detecting trends in seagrass abundance using aerial photograph interpretation: problems arising with the evolution of mapping methods', *Estuaries*, vol. 28, pp. 462–472.
- MHL2003, *DLWC NSW tidal planes data compilation 2001*. *Volume 1 tidal planes analysis,* Report No. MHL1098, DPWS Report No. 01014, Manly Hydraulics Laboratory, 187 pp.
- MHL 2004, *Tidal data compilation*, Report No. MHL1200, Commerce Report No. 02046, Manly Hydraulics Laboratory, 181 pp.
- Morris CC, Stewart PM & Simon TP 2007, 'Development of an index of biotic integrity for a Southeastern coastal plain watershed, USA', *Journal of the American Water Resources Association*, vol. 43, no. 2, pp. 295–307.

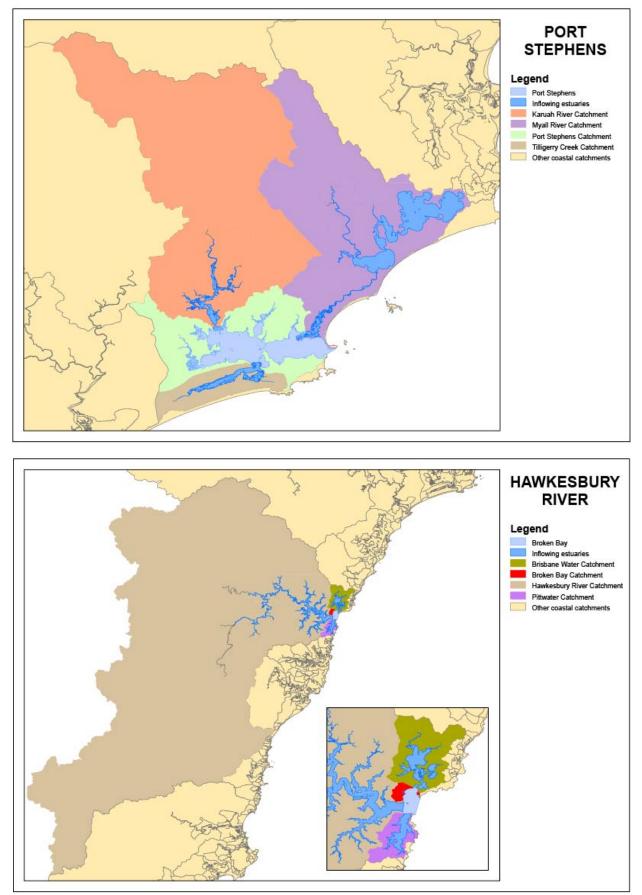
- Moss A, Cox M, Scheltinga D & Rissik D 2006, *Integrated Estuary Assessment Framework*, Technical Report 69, Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, EPA, Queensland Government, 93 pp. [www.ozcoasts.org.au/pdf/CRC/69_estuary_assessment_final_screen.pdf].
- Mount R, Bircher P & Newton J 2007, 'National Intertidal/Subtidal Benthic Habitat Classification Scheme' unpublished report to the National Land and Water Resources Audit.
- Nichols JD & Williams BK 2006, 'Monitoring for conservation', *Trends in Ecology and Evolution*, vol. 21, no. 12, pp. 668–673.
- Nicholson GJ & Longmore AR 1999, 'Causes of observed temporal variability of nutrient fluxes from a southern Australian marine embayment', *Marine and Freshwater Research*, vol. 50, pp. 581–588.
- Nixon SW, Ammermen JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Jahnke RA, Owens NJP, Pilson MEQ & Seitzinger SP 1996, 'The fate of nitrogen and phosphorous at the land-sea margin of the North Atlantic Ocean', *Biogeochemistry*, vol. 35, pp. 141–180.
- NR&E CEOs 2006, *NSW Natural Resources Monitoring, Evaluation and Reporting Strategy,* NSW Natural Resources and Environment CEO Cluster Group, NSW Government.
- NRC 2000, *Clean Coastal Waters Understanding and Reducing the Effects of Nutrient Pollution*, Committee on the Causes and Management of Eutrophication, Ocean Studies Board, Water Science and Technology Board, National Research Council, National Academy Press, Washington DC.
- NRC 2005, *Recommendations State-wide standard and targets*, D05/4832, NSW Natural Resources Commission, 142 pp. [www.nrc.nsw.gov.au/content/documents/Recommendations%20-%20State-wide%20standard%20and%20targets%20September%202005.pdf].
- NSW Govt 1992, Estuary management manual, New South Wales Government.
- NWC 2007, Australian Water Resources 2005: Assessment of river and wetland health: a framework for comparative assessment of the ecological condition of Australian rivers and wetlands, National Water Commission, 36 pp. [www.water.gov.au/publications/RWH_FARWH_Framework_070507.pdf].
- Officer CB & Kester DR 1991,' Notes and discussion, On estimating the non-advective tidal exchanges and advective gravitational circulation exchanges in an estuary', *Estuarine, Coastal and Shelf Science*, vol. 32, pp. 99–103.
- Pease BC 1999, 'A spatially oriented analysis of estuaries and their associated commercial fisheries in New South Wales, Australia', *Fisheries Research*, vol. 42, pp. 67–86.
- Pinckey JL, Paerl HW, Tester P & Richardson TR 2001, 'The role of nutrient loading and eutrophication in estuarine ecology', *Environmental Health Perspectives*, vol. 109, supplement 5 October 2001.
- Pollard DA 1994, 'A comparison of fish assemblages and fisheries in intermittently open and permanently open coastal lagoons on the south coast of New South Wales, south eastern Australia', *Estuaries*, vol. 17, pp. 427–461.
- Rissik D, Doherty M & van Senden D 2007, 'A management focused investigation into phytoplankton blooms in a sub-tropical Australian estuary', *Aquatic Ecosystem Health & Management*, vol. 9, no. 3, pp. 365–378.
- Rissik D, Ho Shon E, Newell B, Baird ME & Suthers IM 2009, 'Plankton dynamics due to rainfall, eutrophication, dilution, grazing and assimilation in an urbanized coastal lagoon', *Estuarine, Coast and Shelf Science*, vol. 84, pp. 99–107.
- Rotherham D, Underwood A.J, Chapman MG & Gray CA 2007, 'A strategy for developing scientific sampling tools for fishery-independent surveys of estuarine fish in New South Wales, Australia', *ICES Journal of Marine Science*, vol. 64, pp. 1512–1516.

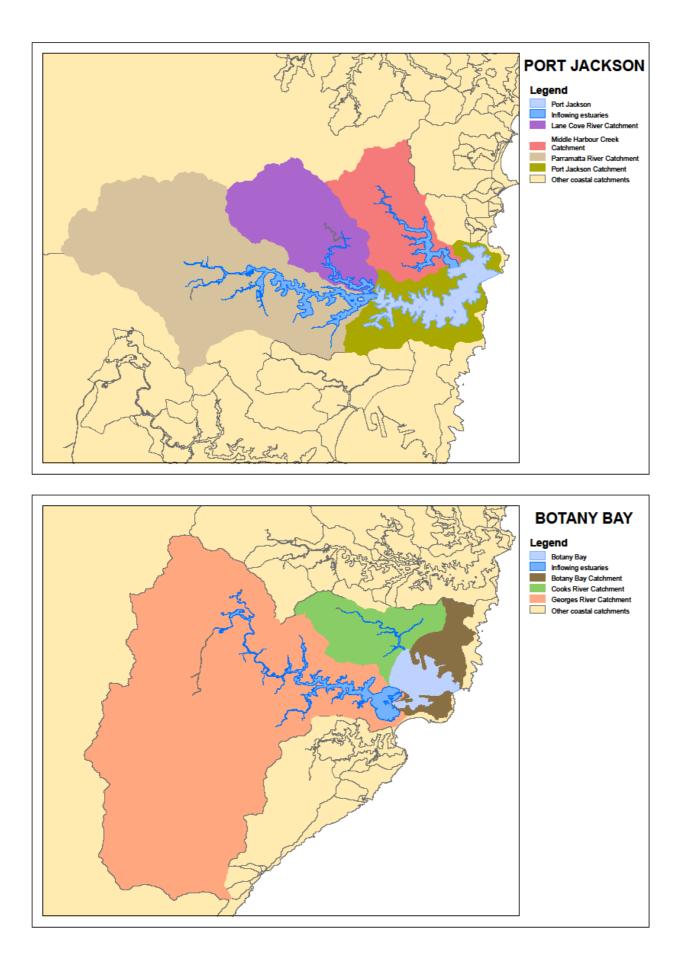
- Roy PS, Williams RJ, Jones AR, Yassini I, Gibbs PJ, Coates B, West RJ, Scanes PR, Hudson JP & Nichol S 2001, 'Structure and function of south-east Australian estuaries', *Estuarine, Coastal and Shelf Science*, vol. 53. pp. 351–384.
- Ryan DA, Heap AD, Radke L & Heggie DT 2003, Conceptual models of Australia's estuaries and coastal waterways: applications for coastal resource management, Geoscience Australia, Record 2003/09, 135 pp. [www.agso.gov.au/pdf/GA1858.pdf].
- Ryther JH & Dunstan WM 1971, 'Nitrogen, phosphorus, and eutrophication in the coastal marine environment' *Science*, vol. 171, pp. 1008–1112.
- Saintilan N 2004, 'Relationships between estuarine geomorphology, wetland extent and fish landings in New South Wales estuaries', *Estuarine, Coastal and Shelf Science*, vol. 61, pp. 591–601.
- Saintilan N & Williams RJ 1999, 'Mangrove transgression into saltmarsh in south-east Australia', *Global Ecology* and *Biogeography Letters*, vol. 8, pp. 117–124.
- Scanes P, Coade G, Doherty M & Hill R 2007, 'Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia', *Estuarine, Coastal and Shelf Science*, vol. 74, pp. 306–319.
- Scavia D & Liu Y 2009,' Exploring estuarine nutrient susceptibility', *Environmental Science & Technology*, vol. 43, no. 10, pp. 3474–3479.
- Scheltinga DM, Counihan R, Moss A, Cox M & Bennett J 2004, Users' guide to estuarine, coastal and marine indicators for regional NRM monitoring, Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management, Brisbane, 198 pp. [lwa.gov.au/files/products/national-land-and-water-resourcesaudit/pn21280/pn21280.pdf].
- Scheltinga D & Moss A 2008, *Stream and Estuary Assessment Program*, Environmental Protection Agency, Queensland Government, unpublished.
- Seegert G 2000, 'The development, use, and misuse of biocriteria with an emphasis on the index of biotic integrity', *Environmental Science and Policy*, vol. 3, pp. 51–58.
- Sheedy DP 1996, 'The spatial and temporal variability of berms', Dissertation submitted in partial fulfilment of the requirements for the degree of a Bachelor of Science (Honours), University of Sydney, 1996.
- SKM 1999, *Trial application of the ISC to the Clyde River Basin, and modification of the ISC for estuaries, wetland and urban streams*, unpublished report for the NSW Department of Land and Water Conservation, August 1999.
- Stenson M, Littleboy M & Gilfedder M 2005, 'Modelling water and salt export from unregulated upland catchments: The 2CSalt model' in *Proceedings International Water Conference*, NZHS-IAH-NZSSS Auckland, 28 November –3 December 2005.
- Thorman R 2006, *The development of estuarine, coastal and marine indicators and information systems*, background paper for the National Land and Water Resources Audit, 6 pp. [lwa.gov.au/files/products/national-land-and-water-resources-audit/pn21278/pn21278.pdf].
- US EPA 2000, *Estuarine and coastal marine waters: Bioassessment and biocriteria technical guidance*, Office of Water, United States Environmental Protection Agency, Washington, DC. EPA-822-B-00-024 [water.epa.gov/scitech/swguidance/standards/criteria/aqlife/biocriteria/upload/2009_04_22_biocriteria States_estuaries_estuaries.pdf].
- US EPA 2001, Nutrient Criteria Technical Guidance Manual, EPA-822-B-01-003, Estuarine and Coastal Waters, Office of Water, United States Environmental Protection Agency, Washington, DC [water.epa.gov/scitech/swguidance/standards/criteria/nutrients/marine/index.cfm].

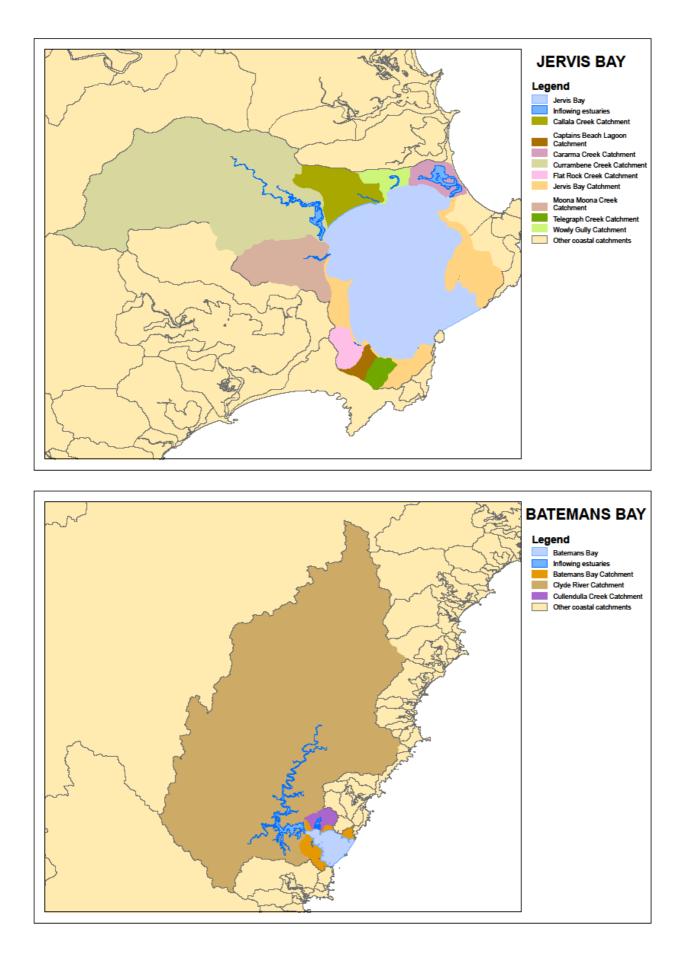
- US EPA 2002, *Methods for Evaluating Wetland Condition. #6 Developing Metrics and Indexes of Biological Integrity*, EPA-822-R-02-016, Office of Water, United States Environmental Protection Agency, Washington, DC, 38 pp. [water.epa.gov/type/wetlands/upload/2008 12 23 criteria wetlands 6Metrics.pdf].
- US EPA 2008, *National Coastal Condition Report III*, EPA/842-R-08-002, Office of Water, United States Environmental Protection Agency, Washington, DC, 300 pp. [water.epa.gov/type/oceb/assessmonitor/downloads.cfm].
- Webster IT & Ford PW 1998, Aspects of nutrient-phytoplankton dynamics in Lake Illawarra, Division of Water Resources Report No. 98-6, CSIRO.
- Webster IT, Ford PW & Hodgson B 2002, 'Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon', *Estuaries*, vol. 25, no. 4A, pp. 540–551.
- Wellman SM 2008, 'Factors influencing phytoplankton production in four coastal lagoons in NSW, Australia', unpublished Ph D Thesis, University of Newcastle, NSW.
- West G, Williams RJ & Laird R 2004, *Distribution of estuarine vegetation in the Parramatta River and Sydney Harbour, 2000*, final report to NSW Waterways Authority, NSW Fisheries Final Report Series No 70, 33 pp.
- West G & Williams RJ 2008, Preliminary assessment of the historical, current and future cover of seagrass in the estuary of the Parramatta River, NSW Department of Primary Industries Fisheries Final Report Series No. 98, ISSN 1449-9967, 61 pp.
- West RJ, Thorogood C, Walford T & Williams RJ 1985, 'An estuarine inventory for New South Wales, Australia', *Fisheries Bulletin 2*, Department of Agriculture, NSW, Australia, 140 pp.
- WFD 2002, *Guidance on typology, reference conditions and classification systems for transitional and coastal waters,* produced by the Common Implementation Strategy (CIS) Working Group 2.4 (Coast) for the Water Framework Directive, 121 pp.

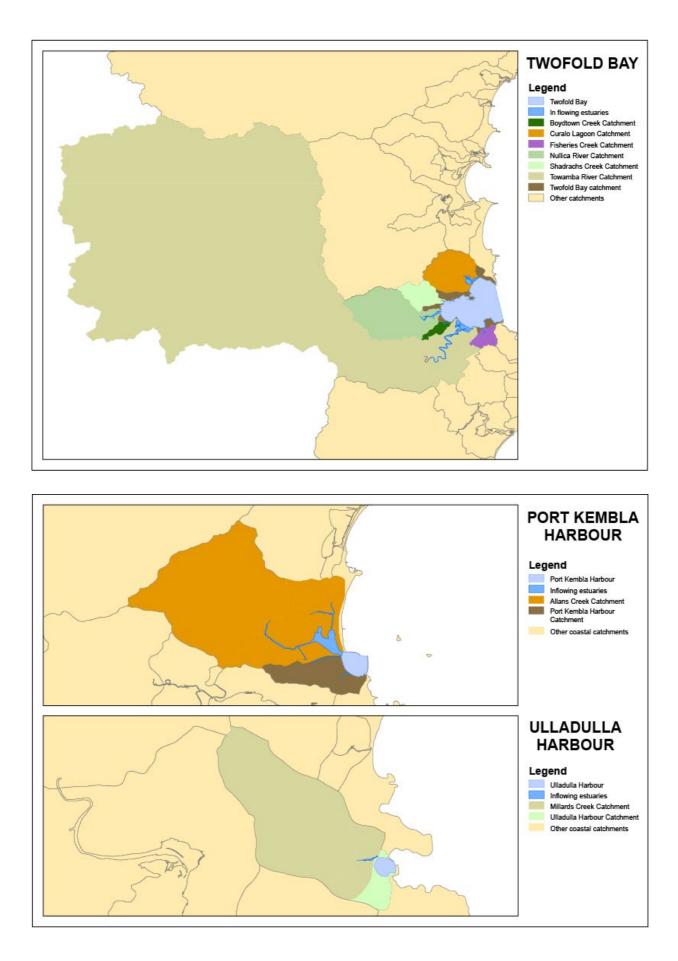
[www.eutro.org/documents/wfd%20cis2.4%20(coast)%20guidance%20on%20tcw.pdf].

- Whitall D, Bricker S, Ferreira J, Nobre AM, Simas T & Silva M 2007, 'Assessment of eutrophication in estuaries: Pressure-State-Response and nitrogen source apportionment', *Environmental Management*, vol. 40, pp. 678–690.
- Wicks EC, Kelsey, RH, Powell SL & Andreycheck, ML 2011, Sampling and data analysis protocols for Mid-Atlantic tidal tributary indicators. IAN Press, Cambridge, Maryland, USA, 46 pp. [http://ian.umces.edu/pdfs/ecocheck_report_313.pdf].
- Williams RJ, Meehan AJ & West G 2003, 'Status and trend mapping of aquatic vegetation in NSW estuaries', in Woodroffe CD & Furness RA, (eds.), *Coastal GIS 2003: an integrated approach to Australian coastal issues*, Wollongong Papers on Maritime Policy, no. 14, pp. 317–346.
- Williams RJ & Watford FA 1996, 'An inventory of impediments to tidal flow in NSW estuarine fish habitats', *Wetlands (Australia)*, vol. 15, pp. 44–54.
- Williams RJ, Watford FA & Taylor MA 1996, A summary of aspects of FRDC project 94/041 "Restoration of estuarine fisheries habitat" relevant to tidal obstructions in New South Wales estuaries, NSW Fisheries Research Institute, Cronulla, NSW, 109 pp.
- Williams R, Watford F & Balashov V 2000, Kooragang Wetland Rehabilitation Project: History of changes to estuarine wetlands of the Lower Hunter River. June 2000, New South Wales Fisheries Final Report Series No. 22 ISSN 1440-3544.
- Williams R 2001, '2001 Saltmarsh report', in Kennelly S & McVea T (eds.), *Status of Fisheries Resources 2000/2001*, NSW Department of Primary Industries, Cronulla, pp. 31–35.


- Williams RJ & Meehan AJ 2004, 'Focusing management needs at the sub-catchment level via assessments of change in the cover of estuarine vegetation, Port Hacking, NSW, Australia', *Wetlands Ecology and Management*, vol. 12, pp. 499–518.
- Williams RJ, West G, Morrison D & Creese RG 2006, *Estuarine Resources of New South Wales*, prepared for the Comprehensive Coastal Assessment (DOP) by the NSW Department of Primary Industries, Port Stephens.
- Williams RJ & Thiebaud I 2007, An analysis of changes to aquatic habitats and adjacent land-use in the downstream portion of the Hawkesbury Nepean River over the past sixty years, Fisheries Final Report Series No. 91, 97 pp.
- Wilton KM 2002, 'Coastal wetland habitat dynamics in selected New South Wales estuaries', *Proceedings of Australia's National Coastal Conference*, Twin Towns Services Club, Tweed Heads, NSW, Australia, 4–8 November 2002, pp. 511–514.


References used to source EMC data


- Australian Water Technologies 2003, Observed rates of contaminant export from the Lake Burragorang and Nepean catchments, AWT Report Number: 2003/0062, AWT Pty Ltd.
- Barlow K, Nash D & Grayson RB 2005, 'Phosphorus export at the paddock, farm-section, and whole farm scale on an irrigated dairy farm in south-eastern Australia', *Australian Journal of Agricultural Research*, vol. 56, pp. 1–9.
- Barlow K, Nash D, Hannah M & Robertson F 2007, 'The effect of fertiliser and grazing on nitrogen export in surface runoff from rain-fed and irrigated pastures in south-eastern Australia', *Nutrient Cycling in Agroecosystems*, vol. 77, pp. 69–82.
- Chiew FHS & McMahon TA 1999, 'Modelling runoff and diffuse pollution loads in urban areas', *Water Science and Technology*, vol. 12, pp. 241–248.
- Cornish P, Hallissey R & Hollinger E 2002, 'Is a rainfall simulator useful for estimating phosphorus runoff from pastures a question of scale-dependency?', *Australian Journal of Experimental Agriculture*, vol. 42, pp. 953–959.
- Cosser PR 1989, 'Nutrient concentration-flow relationships and loads in the South Pine River, south-eastern Queensland. I. Phosphorus loads', *Australian Journal of Marine and Freshwater Research*, vol. 40, pp. 613–630.
- Cox JW & Ashley R 2000, 'Water quality of gully drainage from texture-contrast soils in the Adelaide Hills in low rainfall years', *Australian Journal of Soil Research*, vol. 38, pp. 959–972.
- Cox JW & Pitman A 2001, 'Chemical concentrations of overland flow and throughflow from pastures on sloping texture-contrast soils', *Australian Journal of Agricultural Research*, vol. 52, pp. 211–220.
- Drewry JJ, Newham LTH, Greene RSB, Jakeman AJ & Croke BFW 2006, 'A review of nitrogen and phosphorus export to waterways: context for catchment modelling', *Marine and Freshwater Research*, vol. 57, pp. 757–774.
- Ferguson A, Potts J & Scanes P 2009, *Developing Ecological Function Indicators for Riverine Estuaries*, NSW Environmental Trust Final Report, unpublished.
- Fleming NK & Cox JW 1998, 'Chemical losses off dairy catchments located on a texture-contrast soil: carbon, phosphorus, sulphur, and other chemicals', *Australia Journal of Soil Research*, vol. 36, pp. 979–995.


- Fletcher T, Duncan H, Poelsma P & Lloyd S 2004, Stormwater flow and quality, and the effectiveness of nonproprietary stormwater treatment measures – a review and gap analysis, Technical Report, Report 04/8, ISBN 1 920813 13 6, Cooperative Research Centre for Catchment Hydrology, 171 pp. [www.catchment.crc.org.au/pdfs/technical200408.pdf].
- Hollinger E, Cornish PS, Baginska B, Mann R & Kuczera G 2001, 'Farm-scale stormwater losses of sediment and nutrients from a market garden near Sydney, Australia', *Agricultural Water Management*, vol. 47, pp. 224–241.
- Hopmans P & Bren LJ 2007, 'Long-term changes in water quality and solute exports in headwater streams of intensively managed radiata pine and natural eucalypt forest catchments in south-eastern Australia', *Forest Ecology and Management*, vol. 253, pp. 244–261.
- McCaskill MR, Ridley AM, Okom A, White RE, Andrew MH, Michalk DL, Melland A, Johnston WH & Murphy SR 2003, 'SGS Nutrient Theme: environmental assessment of nutrient application to extensive pastures in the high rainfall zone of southern Australia', *Australian Journal of Experimental Agriculture*, vol. 43, pp. 927–944.
- McKee L, Eyre B & Hossain S 2000, 'Intra- and interannual export of nitrogen and phosphorus in the subtropical Richmond River catchment, Australia', *Hydrological Processes*, vol. 14, pp. 1787–1809.
- McKergow LA, Weaver DM, Prosser IP, Grayson RB & Reed AEG 2003, 'Before and after riparian management: sediment and nutrient exports from a small agricultural catchment, Western Australia', *Journal of Hydrology*, vol. 270, pp. 253–272.
- McKergow LA, Prosser IP, Hughes AO & Brodie J 2005, 'Regional scale nutrient modelling: exports to the Great Barrier Reef World Heritage Area', *Marine Pollution Bulletin*, vol. 51, pp. 186–199.
- Melland AR, McCaskill MR, White RE & Chapman DF 2008, 'Loss of phosphorus and nitrogen in runoff and subsurface drainage from high and low input pastures grazed by sheep in southern Australia', *Australian Journal of Soil Research*, vol. 46, pp. 161–172.
- Mundy GN, Nexhip KJ, Austin NR & Collins MD 2003, 'The influence of cutting and grazing on phosphorus and nitrogen in irrigation runoff from perennial pasture', *Australian Journal of Soil Research*, vol. 41, pp. 675–685.
- Nash DM & Halliwell DJ 1999, 'Fertilisers and phosphorus loss from productive grazing systems', *Australia Journal of Soil Research*, vol. 37, pp. 403–429.
- Nash DM & Murdoch C 1997, 'Phosphorus in runoff from a fertile dairy pasture', *Australian Journal of Soil Research*, vol. 35, pp. 419–429.
- Ridley AM, Christy BP, White RE, McLean T & Green R 2003, 'North-east Victoria SGS national experiment site: water and nutrient losses from grazing systems on contrasting soil types and levels of inputs', *Australian Journal of Experimental Agriculture*, vol. 43, pp. 799–815.
- Sheridan GJ & Noske PJ 2007, 'A quantitative study of sediment delivery and stream pollution from different forest road types', *Hydrological Processes*, vol. 21, pp. 3107–3122.
- Stevens DP, Cox JW & Chittleborough DJ 1999, 'Pathways of phosphorus, nitrogen and carbon movement over and through texturally differentiated soils, South Australia', *Australian Journal of Soil Research*, vol. 37, pp. 679–693.
- Vink S, Ford PW, Bormans M, Kelly C & Turley C 2007, 'Contrasting nutrient exports from a forested and an agricultural catchment in south-eastern Australia', *Biogeochemistry*, vol. 84, pp. 247–264.

Appendix 1 *Catchments of ports, bays and harbours*

Hydrographic surveys Includes all data captured up to January 2009

Estuary	Date	PDF	Sheets	XYZ file reference
Tweed River and Terranora Broadwater	August 1995	10232	16	Tweed.xyz, Terranora.xyz – digital for lower estuary (NP)
Cudgen Lake and Creek	Feb 1993	9533	2	Cudgen.xyz (NP)
	May 1993	9616	10	
Mooball and Cudgera Creeks	Sept 2007			Fieldwork complete. Plan preparation nearing completion.
Brunswick River	Feb 1997	53061	2	Brunswick.xyz – digital lower estuary only. Paper cross sections
	2007			Complete.
Belongil Creek	July 1994	10042	5	Belongil.xyz
Lake Ainsworth	Feb 1996	10395	1	Ainsworth.xyz
Richmond River	2004/2005	55281	62	55281.xyz
Shaws Bay	July 1999	53755	1	ShawsBay.xyz
Evans River	June 1997	53139	2	Evans.xyz – lower estuary only
	March 2006	55326	7	55326.xyz
Clarence Entrance	March 2004	54732	2	Entrance.xyz, Channel.xyz – lower entrance area only
Wooli Wooli River	Feb 2003	54762	13	Wooli.xyz
Corindi River	March 2004	55072	4	Corindi_2004.xyz
Arrawarra Creek	August 2005	55165	1	55165.xyz
Darkum Creek	March 2004	55067	1	Darkum_2004.xyz
Woolgoolga Lake	March 2004	55066	1	Woolgoolga_2004.xyz
Hearns Lake	August 2005	55081	1	Hearns_2005.xyz
Moonee Creek	Dec 2002	54555	6	Moonee.xyz
Coffs Creek	Oct 1997		6	Digital data available (NP)
Bellinger / Kalang Rivers	1984/85 2008		49	No digital data, paper copies only Majority of fieldwork completed
Boambee Creek	March 2006	55770	5	Boambee.xyz
Deep Creek	May 2002	54362	8	DeepCreek.xyz
Nambucca River	1989/90 2008/09		40	No digital data, paper copies only Approx 50% of fieldwork complete
Macleay River	April 2003	54969	39	Macleay.xyz
Saltwater Creek	July 2001	54317	5	Saltwater.xyz
Korogoro Creek	Nov 2005	55208	3	55208.xyz
Killick Creek	July 2001	54316	4	Killick.xyz
Hastings River	Oct 2000	54218	49	Hastings.xyz, Hastingsposdepths.xyz
Lake Innes / Lake Cathie	Dec 1991	9320	3	Cathie.xyz (NP)
	April 1992	9332	7	
Camden Haven	1979		12	No digital data, paper copies only (NP)
Manning Estuary	1999	53872	44	Manning.xyz
Wallis Lake	Nov 1998	53665	61	Wallis.xyz
Smiths Lake	Nov 1995 August 1996	52552 52572	7 1	Smiths.xyz
Myall Lake	August 2002	54797	44	Myall.xyz - excludes upper Myall River
Lake Macquarie / Swansea Channel	April 1996	53077	9	LakeMacquarie.xyz – covers inlet channel only
Black Neds Bay	Sept 2006		1	Blackneds.xyz
Tuggerah Lakes	Sept 1975		28	No digital data paper copy only (NP)
Wamberal Lagoon	Dec 2003	55083	1	Wamberal.xyz
Avoca Lake and Bulbararing Lagoon	Dec 1995	53498	7	Avoca.xyz
Brisbane Water	Feb 1993	51018	6	Brisbane.xyz
Brisbane Water – Fagans Bay	Feb 2004	54763	1	Brisbane 2004.xyz
Brisbane Water – Woy Woy Bay & inlet	Feb 2004	54774	1	Brisbane 2004.xyz
Hawkesbury River / Broken Bay	1988	8493	12	Hawkesbury.xyz – majority of river
Biokon Buy	June 1989	8678	12	covered by paper cross sections (NP)
Sandbrook Inlet	May 2006	55382	2	55382.xyz
Berowra Creek	Sept 1995	52647	12	Berowra.xyz
Narrabeen Lakes	Feb 2005	54936	7	Narrabeen.xyz

Estuary	Date	PDF	Sheets	XYZ file reference
Cooks River	May 1989 April 1989	8710 8599	13 11	Cooks.xyz (NP)
Georges River	1976–1997	53496	33	Sections 52 – 159 – survey10.xyz (NP
	1970-1997	33430	55	Sections 32 – 133 – survey 10.xyz (N Sections 1–51 not available in digital format.
Port Hacking	May 2003	54639	15	PtHacking.xyz – Lower estuary only
Hewitts Creek	March 2005	55234	1	55234.xyz
Towradgi Creek	March 2005	55211	1	55211.xyz
Fairy Creek	Feb 2005	55232	1	55232.xyz
Lake Illawarra	Jan 1999	53525	2	Illawarra.xyz – Inlet channel only.
	2008	33323	2	Paper copy for lake basin Fieldwork nearing completion. Photogrammetric base plan done
Elliot Lake	Dec 2002	54603	3	ElliotLake.xyz
Minnamurra River	July 1992	9486	1	Not Available (NP)
	,	9487	6	Not Available
Werri Lagoon	Feb 2003	54583	2	Werri_Lagoon.xyz
Crooked River	Nov 2000	54169	7	Crooked.xyz
Shoalhaven / Crookhaven	April 1989	8641	6	Shoalhaven.xyz
Estuary	2005/2006		28	
Berrys Canal	May 1992	10128	3	No xyz, pdf only
Lake Wollumboola	Nov 1991	9290	4	Wollumboola.xyz
	Oct 1996	53095	5	
Currarong Creek and offshore				Currarong.xyz
Sussex Inlet	Feb 1992	10055	5	Sussex.xyz, (NP)
St Georges Basin	Feb 1992		5	Pdf only
Swan Lake	June 2000	54042	5	Swanlake.xyz
Lake Conjola	Jan 1993	9538	19	Conjola.xyz Photogrammetric base plan done
Narrawallee Creek	August 1993	9787	7	Narrawallee.xyz (NP)
Burrill Lake	April 1990	8879	6	Burrill_1990.xyz
	March 2001	54330	7	Burrill_2001.xyz
Tabourie Lake	Jan 1993	9554	13	Tabourie.xyz (NP)
Termeil Lake	August 2004	55078	1	Termeil.xyz
Meroo Lake	August 2004	55079	3	Meroo.xyz
Willinga Lake	August 2002	54421	1	Willinga.xyz
Durras Lake	June 2004	55023	6	Durras_Lake.xyz
Clyde River	Dec 1998	53592	14	Clyde.xyz
Batemans Bay	Dec 1995	53614	9	Batemans_1995.xyz
Tomaga River	Feb 1997	53500	11	Tomaga.xyz, Tomaga_offshore.xyz
Moruya River	April 2000	53981	18	Moruya.xyz
			17	
Coila Lake and Creek and Tuross Lake and	April 1994	52578		Coila.xyz, Tuross.xyz, Sections.xyz
	April 1994	10064	15	
tributaries Kianga Lake and Inlet	August 2002	E 4 E 4 4	1	Kienze w/z
0	August 2002	54541		Kianga.xyz
Wagonga Inlet	May 1997	53175	7	Wagonga.xyz
Nangudga Lake and Inlet	August 2002	54550	1	Nangudga.xyz
Wallaga Lake	Dec 1993	9792	11	Wallaga.xyz
Bermagui Boat Harbour	July 2002	54569 54570	6	Bermagui_BH.xyz
Bermagui River	Dec 1990	9091	11	Bermagui_River.xyz (NP)
	Dec 1990	9147	3	Not Available
Bega River	Sept 2002	54625	11	Bega_2002.xyz
Back Lagoon	Aug 2003	55075	1	Back_Lagoon.xyz
Merimbula Lake	Aug 2003	55076	13	Merimbula_Pambula.xyz
Pambula Lake	Aug 2003	55076	13	Merimbula_Pambula.xyz
Curalo Lagoon	Nov 1996	53425	1	Curalo.xyz
Wonboyn River and Lake	Oct 1997	53499	14	Wonboyn.xyz

Estuary morphometric parameters

		aramet	Area (k	m²)			Estuary	Average	Peri-	Jpper lin	nit (km)
_	_			Open		Tot. estuary	volume	depth	meter		Mang-
Estuary	-	Mangrove			-	- saltmarsh	(MI)	(m)	(km)	Tidal	rove
Tweed River	0.806 0.009	3.982 0.139	0.763	17.16	22.72 2.15	21.95 2.10	56955	2.59	246.4 22.7	42.0	32.5
Cudgen Creek Cudgera Creek	0.009	0.139	0.052 0.074	1.95 0.23	0.48	2.10 0.41	2371 250	1.13 0.61	22.7 14.0	13.7 5.8	11.3 3.4
Mooball Creek	0.024	0.140	0.004	0.20	0.53	0.52	351	0.67	13.2	10.6	10.1
Brunswick River	0.036	1.233	0.310	2.01	3.59	3.28	4268	1.30	79.2	14.0	12.6
Belongil Creek	0.000	0.070	0.083	0.12	0.27	0.19	88	0.46	6.2	3.5	3.2
Tallow Creek	0.000	0.000	0.000	0.12	0.12	0.12	47	0.39	4.2	2.8	1.6
Broken Head Creek	0.000	0.000	0.000	0.05	0.05	0.05	15	0.29	1.7		
Richmond River	0.320	6.026	0.599	31.43	38.38	37.78	119314	3.16	678.2	114.1	44.9
Salty Lagoon Evans River	ns 0.006	ns 0.409	ns 0.358	0.16 1.89	0.16 2.66	0.16 2.30	69 2637	0.43 1.15	5.9 46.8	2.1 15.4	0.9 15.0
Jerusalem Creek	0.000	0.409	0.358	0.32	0.32	0.32	179	0.56	40.0	5.0	1.5
Clarence River	0.826	7.653	2.901	120.94	132.32	129.42	283001	2.19	841.4	109.5	53.0
Lake Arragan	ns	ns	ns	0.97	0.97	0.97	814	0.84	11.8		
Cakora Lagoon	0.000	0.005	0.129	0.22	0.36	0.23	114	0.50	11.1	2.1	1.4
Sandon River	0.086	0.574	0.477	1.48	2.62	2.14	2393	1.12	50.1	14.7	13.5
Wooli Wooli River	0.094	0.860	0.669	2.12	3.75	3.08	2611	0.85	63.1	17.0	16.7
Station Creek	0.000	0.000	0.004	0.25	0.26	0.25	132	0.52	13.1	6.4	1.7
Corindi River	0.024	0.371	0.572	0.93	1.90	1.32	1557	1.18	34.2	12.3	10.2
Pipe Clay Creek Arrawarra Creek	ns 0.001	ns 0.010	ns 0.010	0.01 0.10	0.01 0.12	0.01 0.11	1.7 44	0.16 0.39	1.1 6.3	0.9 2.4	0.6 2.3
Darkum Creek	0.001	0.010	0.010	0.10	0.12	0.11	44 16	0.39	6.3 2.9	2.4 2.6	2.3 2.4
Woolgoolga Lake	0.000	0.006	0.000	0.05	0.00	0.00	67	0.30	4.5	2.0	2.4
Flat Top Point Creek	ns	ns	ns	0.02	0.02	0.02	4.7	0.21	2.1		1.4
Hearns Lake	0.000	0.003	0.045	0.10	0.15	0.10	38	0.37	4.6	2.0	1.9
Moonee Creek	0.032	0.085	0.132	0.16	0.41	0.28	414	1.49	10.1	7.3	7.6
Pine Brush Creek	ns	ns	ns	0.02	0.02	0.02	2.9	0.19	0.8	1.0	
Coffs Creek	0.002	0.192	0.002	0.26	0.46	0.46	293	0.64	11.6	6.8	5.5
Boambee Creek	0.060	0.331	0.029	0.57	0.99	0.96	805	0.84	24.7	7.1	6.9
Bonville Creek Bundageree Creek	0.089 ns	0.137 ns	0.159 ns	1.27 0.00	1.66 0.00	1.50 0.00	1466 0.25	0.98 0.10	37.2 0.3	10.4 3.6	9.2
Bellinger River	0.133	1.172	0.143	6.71	8.16	8.02	14442	1.80	145.0	26.1	18.9
Dalhousie Creek	0.002	0.007	0.007	0.06	0.08	0.07	22	0.32	4.6	2.3	2.1
Oyster Creek	0.000	0.000	0.003	0.14	0.14	0.14	58	0.41	9.2	2.7	2.5
Deep Creek	0.010	0.035	0.639	1.04	1.72	1.08	1387	1.28	26.5	9.3	4.7
Nambucca River	0.605	1.455	1.277	9.31	12.64	11.37	23227	2.04	214.8	30.7	24.5
Macleay River	0.957	5.710	4.247	20.73	31.64	27.39	70235	2.56	363.4	56.7	21.9
South West Rocks Creek Saltwater Creek (Frederickton)	0.002 0.000	0.648 0.000	0.112 0.000	0.18 0.28	0.94 0.28	0.83 0.28	654 83	0.79 0.29	7.2 9.1	3.1 4.3	2.7 4.3
Korogoro Creek	0.000	0.058	0.000	0.20	0.28	0.20	124	0.51	12.5	6.4	5.4
Killick Creek	0.000	0.045	0.009	0.24	0.29	0.28	236	0.84	9.6	2.9	2.7
Goolawah Lagoon	ns	ns	ns	0.13	0.13	0.13	51	0.40	4.7		
Hastings River	1.458	3.437	1.867	23.20	29.96	28.09	52686	1.88	433.3	35.8	24.8
Cathie Creek	0.000	0.000	5.887	7.86	13.75	7.86	8379	1.07	32.3	8.9	3.1
Duchess Gully	ns	ns 1 409	ns 0.769	0.02 19.73	0.02 32.16	0.02	5.4 113802	0.22	3.4 164.7	1.6 25.9	20.9
Camden Haven River Manning River	10.250 1.654	1.408 3.905	0.768 2.447	26.71	32.16	31.39 32.27	96259	3.63 2.98	395.4	25.9 53.9	20.9 37.8
Khappinghat Creek	0.003	0.000	0.159	1.03	1.19	1.03	885	0.86	33.2	9.3	07.0
Black Head Lagoon	0.000	0.000	0.000	0.01	0.01	0.01	1.4	0.15	0.8	0.0	
Wallis Lake	31.897	1.471	5.900	59.43	98.70	92.80	217951	2.35	403.5	32.1	32.1
Smiths Lake	2.960	0.000	0.000	7.05	10.01	10.01	23552	2.35	29.0	5.9	
Myall River	2.173		2.670	107.32	115.20	112.53	448258	3.98	297.4	61.5	32.9
Karuah River Tilligerry Creek	0.066 1.797	5.070 6.255	3.756 4.142	8.99 8.26	17.88 20.45	14.12 20.45	31221 51714	2.21 2.53	153.0 71.8	47.7 35.9	46.2 33.0
Port Stephens	12.594	12.788	6.490	102.50	134.38	123.75	1741516	14.07	251.4	33.9	33.0
Hunter River	0.000	19.217	5.204	22.61	47.03	41.83	137089	3.28	389.6	63.5	33.2
Glenrock Lagoon	ns		ns	0.05	0.05	0.05	15	0.29	2.2	1.0	0.5
Lake Macquarie	14.633	1.249	0.887	97.33	114.10	113.21	646274	5.71	320.9	24.0	24.0
Middle Camp Creek	ns		ns	0.01	0.01	0.01	2.3	0.18	2.2		
Moonee Beach Creek	ns		ns	0.00	0.00	0.00	0.21	0.09	0.4	0.5	7.1
Tuggerah Lake	17.318	0.001	0.129	63.31	80.76	80.63	193231	2.40	138.1	19.5	4.8
Wamberal Lagoon	0.436 0.000	0.000	0.000	0.08 0.28	0.52 0.28	0.52	880 151	1.70 0.54	6.3 5.4	2.9 2.5	1.8
Terrigal Lagoon Avoca Lake	0.000 ns	0.001 ns	0.000 ns	0.28	0.28	0.28 0.67	293	0.54	10.8	2.5	1.0
Cockrone Lake	0.289	0.000	0.000	0.07	0.07	0.33	187	0.44	4.2	2.2	
Brisbane Water	5.582	2.078	1.124	19.56	28.34	27.22	84199	3.09	126.5	21.2	20.7
Hawkesbury River	0.915	9.833	2.878	100.88	114.50	111.63	1541412	13.81	808.7	138.5	68.0
Pittwater	1.855	0.175	0.027	16.33	18.39	18.36	181836	9.90	56.2	11.3	10.8
Broken Bay	0.036	0.000	0.000	17.11	17.14	17.14	167615	9.78	21.9		
Narrabeen Lagoon	0.617	0.000	0.008	1.69	2.32	2.31	5252	2.27	21.7	6.5	3.5
Dee Why Lagoon	0.000	0.000	0.063	0.24	0.30	0.24	13	0.05	3.7	1.4	
Curl Curl Lagoon	0.000	0.000	0.000	0.07	0.07	0.07	21	0.31	1.7	1.2	
Manly Lagoon Middle Harbour Creek	0.001 0.058	0.000 0.142	0.000 0.000	0.10 5.91	0.10 6.11	0.10 6.11	36 81900	0.36 13.40	5.6 49.1	2.8 16.8	16.3
Lane Cove River	0.058	0.142	0.000	2.60	2.98	2.98	12600	4.23	33.6	23.3	23.3
	0.010	0.000	0.000	2.00	2.00	2.50	12000	1.20	00.0	20.0	20.0

			Area (ki	m ²)			Estuary	Average	Peri- I	nit (km)	
				Open		Tot. estuary	volume	depth	meter		Mang-
Estuary	-	Mangrove				- saltmarsh	(MI)	(m)	(km)	Tidal	rove
Parramatta River Port Jackson	0.105 0.340	1.346 0.000	0.095 0.000	12.19 28.72	13.74	13.74	69700 276400	5.07	111.8 100.5	30.3	30.2
Cooks River	0.340	0.000	0.000	1.09	29.06 1.20	28.97 1.20	376400 1084	12.99 0.90	37.6	21.9	20.7
Georges River	1.934		0.840	20.00	26.59	25.75	271394	10.54	221.3	49.3	47.9
Botany Bay	5.358	2.296	0.762	31.14	39.55	38.79	440816	11.36	59.0		
Port Hacking Wattamolla Creek	1.002 ns		0.128 ns	10.27 0.03	11.70 0.03	11.57 0.03	105262 8.2	9.09 0.25	74.3 1.6	14.1 1.1	13.3
Hargraves Creek	ns		ns	0.03	0.03	0.03	0.2 0.34	0.25	0.4	0.3	
Stanwell Creek	ns		ns	0.01	0.01	0.01	1.3	0.15	0.6	0.4	
Flanagans Creek	ns	ns	ns	0.00	0.00	0.00	0.16	0.09	0.3		
Woodlands Creek	ns	ns	ns	0.00 0.00	0.00 0.00	0.00 0.00	0.40 0.61	0.11 0.12	0.4 0.7	0.2 0.6	
Slacky Creek Bellambi Gully	ns ns	ns ns	ns ns	0.00	0.00	0.00	3.4	0.12	1.5	1.0	0.2
Bellambi Lake	ns	ns	ns	0.03	0.03	0.03	7.3	0.24	1.5	0.7	0.7
Towradgi Creek	0.000	0.000	0.000	0.04	0.04	0.04	11	0.27	3.2	1.9	1.4
Fairy Creek	ns	ns 0.024	ns 0.000	0.11	0.11	0.11	42	0.38	7.5	2.6	1.5
Allans Creek Port Kembla	0.000 0.000	0.021 0.000	0.008 0.000	1.14 1.37	1.17 1.37	1.16 1.37	1042 8439	0.89 6.14	16.0 7.8		
Lake Illawarra	7.966	0.000	0.302	27.56	35.83	35.53	74275	2.09	88.5	11.5	8.2
Elliott Lake	0.007	0.005	0.001	0.07	0.08	0.08	27	0.34	4.1	2.0	1.7
Minnamurra River	0.117	0.879	0.327	0.54	1.86	1.53	1517	0.99	16.8	9.6	7.8
Spring Creek	0.000	0.000	0.000	0.05 0.00	0.05 0.00	0.05 0.00	15 0.46	0.29 0.11	2.6 0.5	1.0 0.5	
Munna Munnora Creek Werri Lagoon	ns 0.001	ns 0.000	ns 0.000	0.00	0.00	0.00	0.46	0.11	0.5 8.1	0.5 2.1	0.8
Crooked River	0.001	0.008	0.000	0.21	0.28	0.26	141	0.54	7.3	3.1	2.7
Shoalhaven River	4.239	4.180	2.058	21.42	31.89	29.84	86509	2.90	271.9	50.2	22.4
Wollumboola Lake	1.340		0.000	4.99	6.33	6.33	4979	0.79	25.7		
Currarong Creek Cararma Creek	ns 0.264	ns 0.993	ns 1.089	0.03 0.04	0.03 2.39	0.03 2.39	8.6 2767	0.25 1.16	3.4 12.9	1.7 17.3	1.6 17.0
Wowly Gully	0.204		0.094	0.04	0.16	0.16	71	0.44	3.2	17.3	17.0
Callala Creek	0.000	0.000	0.000	0.01	0.01	0.01	0.88	0.14	0.4	15.1	14.9
Currambene Creek	0.251	0.943	0.266	0.76	2.22	2.22	2511	1.13	38.2	29.6	29.0
Moona Moona Creek	0.033		0.000	0.05	0.14	0.14	58	0.42	4.7	14.3	14.2
Flat Rock Creek Captains Beach Lagoon	0.000 0.000	0.000 0.000	0.006 0.000	0.01 0.05	0.01 0.05	0.01 0.05	2.5 13	0.18 0.28	1.0 2.4	8.2	8.2
Telegraph Creek	0.000	0.000	0.000	0.03	0.03	0.03	0.67	0.20	0.6	6.9	
Jervis Bay	5.534	0.062	0.028	118.27	123.89	122.41	1977656	16.16	62.4		
St Georges Basin	3.170	0.276	0.149	37.31	40.91	40.76	215079	5.28	124.7	21.9	14.7
Swan Lake Berrara Creek	0.261 0.052	0.000 0.000	0.000 0.005	4.41 0.20	4.68 0.26	4.68 0.26	10998 132	2.35 0.52	16.2 8.0	3.8	
Nerrindillah Creek	0.032	0.000	0.000	0.20	0.20	0.20	24	0.32	2.9	5.0	
Conjola Lake	0.166	0.001	0.027	6.53	6.72	6.69	26799	4.00	58.2	12.2	8.5
Narrawallee Inlet	0.087	0.416	0.176	0.36	1.04	0.86	636	0.74	17.1	7.1	5.9
Mollymook Creek Millards Creek	0.000 0.001	0.000 0.001	0.001 0.001	0.01 0.00	0.01 0.00	0.01 0.00	0.77 0.57	0.13 0.12	0.9 0.3	0.8 0.7	0.3 0.5
Ulladulla	0.000	0.000	0.000	0.00	0.00	0.09	350	3.74	1.2	0.7	0.0
Burrill Lake	0.764	0.000	0.237	3.38	4.38	4.14	17653	4.26	34.9	10.0	5.6
Tabourie Lake Termeil Lake	0.219 0.006	0.000 0.000	0.040 0.000	1.23 0.57	1.49 0.57	1.45 0.57	1124 398	0.78 0.69	22.4 10.3	6.6 4.3	
Meroo Lake	0.000	0.000	0.000	0.57	1.37	1.37	1297	0.09	15.9	4.5	
Willinga Lake	0.173		0.000	0.14	0.31	0.31	95	0.30	7.4	3.3	
Butlers Creek	0.007		0.001	0.02	0.03	0.03	6.1	0.23	1.8	1.0	
Durras Lake	0.496		0.171	3.10	3.77	3.60	5051	1.40	37.9	9.3	
Durras Creek Maloneys Creek	ns 0.000		ns 0.000	0.02 0.03	0.02 0.03	0.02 0.03	4.4 6.4	0.21 0.23	2.0 2.1	1.1	
Cullendulla Creek	0.125	0.881	0.174	0.11	1.29	1.12	986	0.88	9.0	4.1	4.2
Clyde River	0.793		0.521	12.92	17.55	17.03	50737	2.98	187.9	43.7	33.6
Batemans Bay	0.189		0.000	34.29	34.48	34.48	383484	11.12	44.1	2.5	2.4
Saltwater Creek (Rosedale) Tomaga River	ns 0.293		ns 0.458	0.00 0.71	0.00 1.81	0.00 1.35	0.20 1411	0.09 1.04	0.3 29.0	0.2 11.5	9.8
Candlagan Creek	0.235	0.039	0.430	0.04	0.20	0.13	52	0.40	5.5	3.4	2.7
Bengello Creek	0.000		0.000	0.01	0.01	0.01	1.8	0.16	1.1		
Moruya River	1.197		0.790	3.68	6.14	5.35	10168	1.90	77.7	20.8	
Congo Creek	0.002		0.011	0.11	0.13 0.08	0.12	45 24	0.39 0.33	9.1 4.4	4.8	0.2
Meringo Creek Kellys Lake	0.000 0.000		0.012 0.000	0.07 0.06	0.08	0.07 0.06	24 20	0.33	4.4 2.4	1.1	
Coila Lake	1.367	0.000	0.343	5.41	7.12	6.77	15442	2.28	24.1	7.8	
Tuross River	2.176		0.802	11.86	15.50	14.70	18208	1.24	161.8	25.0	7.5
Lake Brunderee	0.026		0.017	0.17	0.21	0.19	90 195	0.47	4.9		
Lake Tarourga Lake Brou	0.000 0.000		0.000 0.088	0.33 2.37	0.33 2.45	0.33 2.37	185 2736	0.57 1.16	3.9 15.1	4.6	
Lake Mummuga	0.000		0.088	1.29	1.65	1.63	1649	1.01	17.0	3.6	
Kianga Lake	0.113	0.000	0.000	0.06	0.17	0.17	63	0.37	3.3		
Wagonga Inlet	0.809		0.023	5.91	6.94	6.91	39101	5.66	53.3	11.5	10.5
Little Lake (Narooma)	0.000		0.000	0.10	0.10	0.10	35 63	0.36 0.42	3.0 2.3	2.0	1.7
		0 000						114/			
Bullengella Lake Nangudga Lake	0.000		0.000 0.146	0.15 0.39	0.15 0.74	0.15 0.60				34	33
Nangudga Lake Corunna Lake			0.000 0.146 0.049	0.15 0.39 1.92	0.15 0.74 2.13	0.15 0.60 2.08	389 2300	0.65	9.9 24.6	3.4 4.3	3.3
Nangudga Lake	0.000 0.202	0.000 0.000 0.000	0.146	0.39	0.74	0.60	389	0.65	9.9		3.3

			Area (k	m²)			Estuary /	Average	Peri- L	Jpper lin	nit (km)
				Open	Total	Tot. estuary	volume	depth	meter		Mang-
Estuary	Seagrass	Mangrove	Saltmarsh	water	estuary	- saltmarsh	(MI)	(m)	(km)	Tidal	rove
Wallaga Lake	1.085	0.000	0.162	8.06	9.31	9.14	33512	3.66	78.3	11.1	
Bermagui River	0.271	0.473	0.168	1.24	2.16	1.99	2160	1.09	33.4	10.4	7.4
Baragoot Lake	0.006	0.000	0.079	0.47	0.55	0.47	304	0.64	7.8		
Cuttagee Lake	0.385	0.000	0.113	0.85	1.35	1.24	1130	0.91	22.3	3.7	
Murrah River	0.097	0.017	0.161	0.57	0.84	0.68	500	0.74	17.1	4.9	1.8
Bunga Lagoon	0.000	0.000	0.030	0.11	0.14	0.11	41	0.38	3.4		
Wapengo Lagoon	0.418	0.555	0.506	2.19	3.67	3.17	4070	1.29	19.2	7.6	7.2
Middle Lagoon	0.211	0.000	0.052	0.30	0.56	0.51	335	0.66	8.9		
Nelson Lagoon	0.010	0.491	0.155	0.69	1.35	1.19	1078	0.90	11.8	3.4	3.0
Bega River	0.261	0.000	0.533	3.05	3.84	3.31	6371	1.93	62.3	14.6	0.6
Wallagoot Lake	0.774	0.000	0.118	3.09	3.98	3.87	5342	1.38	15.6		
Bournda Lagoon	0.000	0.000	0.005	0.08	0.08	0.08	27	0.34	4.0		
Back Lagoon	0.215	0.000	0.022	0.14	0.38	0.36	216	0.60	7.7	2.9	
Merimbula Lake	1.638	0.349	0.591	3.00	5.58	4.99	12924	2.59	19.4	6.8	6.5
Pambula River	0.706	0.580	0.366	3.07	4.72	4.36	9774	2.24	34.6	9.8	8.2
Curalo Lagoon	0.185	0.000	0.090	0.53	0.80	0.71	638	0.89	8.1	2.4	
Shadrachs Creek	ns	ns	ns	0.01	0.01	0.01	1.3	0.15	0.7	0.6	
Nullica River	0.012	0.008	0.018	0.30	0.33	0.32	176	0.56	7.7	3.0	2.1
Boydtown Creek	ns	ns	ns	0.02	0.02	0.02	3.1	0.19	2.0	1.0	
Towamba River	0.097	0.017	0.125	1.80	2.04	1.91	2050	1.07	37.4	12.3	3.8
Fisheries Creek	0.006	0.000	0.035	0.05	0.09	0.05	16	0.29	2.9	2.7	
Twofold Bay	0.740	0.000	0.000	29.99	30.73	30.73	334559	10.89	39.0		
Saltwater Creek (Eden)	ns	ns	ns	0.06	0.06	0.06	17	0.30	3.2	1.7	
Woodburn Creek	ns	ns	ns	0.05	0.05	0.05	14	0.29	4.6	2.4	
Wonboyn River	0.806	0.000	0.518	2.88	4.21	3.69	9809	2.66	33.9	11.4	5.2
Merrica River	0.000	0.000	0.000	0.12	0.12	0.12	48	0.40	3.7	2.0	
Table Creek	0.000	0.000	0.001	0.06	0.06	0.06	17	0.30	3.2	1.1	
Nadgee River	0.000	0.000	0.082	0.19	0.27	0.19	90	0.47	7.2	3.7	
Nadgee Lake	0.032	0.000	0.001	1.17	1.20	1.20	1090	0.91	5.8		
Total	161.378	126.042		1431.09	1791.23	1718.51			0121.3		

Estuary area, volume, depth and perimeter are measured at 0.6 m AHD

ns = **n**ot **s**urveyed.

Australian land-use and management classification version 6

I Conservation and Natural Environments	2 Production from Relatively Natural Environments	3 Production from Dryland Agriculture and Plantations	4 Production from Irrigated Agriculture and Plantations	5 Intensive Uses	6 Water
1.1.0 Nature conservation	2.1.0 Grazing natural vegetation	3.1.0 Plantation forestry	4.1.0 Irrigated plantation forestry	5.1.0 Intensive horticulture	6.1.0 Lake
.1.1 Strict nature reserves		3.1.1 Hardwood production	4.1.1 Irrigated hardwood production	5.1.1 Shadehouses	6.1.1 Lake - conservation
1.2 Wildemess area	2.2.0 Production forestry	3.1.2 Softwood production	4.1.2 Irrigated softwood production	5.1.2 Glasshouses	6.1.2 Lake - production
1.3 National park	2.2.1 Wood production	3.1.3 Other forest production	4.1.3 Irrigated other forest production	5.1.3 Glasshouses (hydroponic)	6.1.3 Lake - intensive use
1.1.4 Natural feature protection	2.2.2 Other forest production	3.1.4 Environmental	4.1.4 Irrigated environmental	S	1 . J.
.1.5 Habitat/species management area				5.2.0 Intensive animal production	6.2.0 Reservoir/dam
1.6 Protected landscape		3.2.0 Grazing modified pastures	4.2.0 Irrigated modified pastures	5.2.1 Dairy	6.2.1 Reservoir
1.7 Other conserved area		3.2.1 Native/exotic pasture mosaic	4.2.1 Irrigated woody fodder plants	5.2.2 Cattle	6.2.2 Water storage - intensive use/farm dams
		3.2.2 Woody fodder plants	4.2.2 Irrigated pasture legumes	5.2.3 Sheep	6.2.3 Evaporation basin
.2.0 Managed resource protection		3.2.3 Pasture legumes	4.2.3 Irrigated legume/grass mixtures	5.2.4 Poultry	6.2.4 Effluent pond
2.1 Biodiversity		3.2.4 Pasture legume/grass mixtures	4.2.4 Irrigated sown grasses	5.2.5 Pigs	Street we have the build be a the a
2.2 Surface water supply		3.2.5 Sown grasses		5.2.6 Aguaculture	6.3.0 River
.2.3 Groundwater			4.3.0 Irrigated cropping		6.3.1 River - conservation
2.4 Landscape		3.3.0 Cropping	4.3.1 Irrigated cereals	5.3.0 Manufacturing and industrial	6.3.2 River - production
2.5 Traditional indigenous uses		3.3.1 Cereals	4.3.2 Irrigated beverage & spice crops		6.3.3 River - intensive use
	-	3.3.2 Beverage & spice crops	4.3.3 Irrigated hay & silage	5.4.0 Residential	
.3.0 Other minimal use	1	3.3.3 Hay & silage	4.3.4 Irrigated oil seeds	5.4.1 Urban residential	6.4.0 Channel/agueduct
.3.1 Defence		3.3.4 Oil seeds	4.3.5 Irrigated sugar	5.4.2 Rural residential	6.4.1 Supply channel/aqueduct
3.2 Stock route		3.3.5 Sugar	4.3.6 Irrigated cotton	5.4.3 Rural living	6.4.2 Drainage channel/aqueduct
3.3 Residual native cover		3.3.6 Cotton	4.3.7 Irrigated tobacco	o.t.o Marai nying	0.1.2 Drainage unaimeiraqueuuu
.3.4 Rehabilitation		3.3.7 Tobacco	4.3.8 Irrigated legumes	5.5.0 Services	6.5.0 Marsh/wetland
.5.4 Renabilitation	1	3.3.8 Legumes	4.3.0 imgated legumes	5.5.1 Commercial services	6.5.1 Marsh/wetland - conservation
		3.3.5 Legumes	4.4.0 Irrigated perennial horticulture	5.5.2 Public services	6.5.2 Marsh/wetland - production
		3.4.0 Perennial horticulture	4.4.1 Irrigated tree fruits	5.5.3 Recreation and culture	6.5.3 Marsh/wetland - intensive use
		3.4.1 Tree fruits	4.4.2 Irrigated oleaginous fruits	5.5.4 Defence facilities	0.0.0 Maishiweband - intensive dse
		3.4.1 Oleaginous fruits	4.4.3 Irrigated tree nuts	5.5.5 Research facilities	6.6.0 Estuary/coastal waters
		3.4.2 Oleaginous muits 3.4.3 Tree nuts	4.4.3 Irrigated tree nuts 4.4.4 Irrigated vine fruits	0.0.0 Research facilities	6.6.1 Estuary/coastal waters 6.6.1 Estuary/coastal waters - conservation
		3.4.4 Vine fruits		FAA INPIT	
		3.4.4 Vine truits 3.4.5 Shrub nuts fruits & berries	4.4.5 Irrigated shrub nuts fruits & berries 4.4.6 Irrigated flowers & bulbs	5.6.0 Utilities	6.6.2 Estuary/coastal waters - production
				5.6.1 Electricity generation/transmission	6.6.3 Estuary/coastal waters - intensive use
		3.4.6 Flowers & bulbs	4.4.7 Irrigated vegetables & herbs	5.6.2 Gas treatment, storage and transmission	
		3.4.7 Vegetables & herbs			
			4.5.0 Irrigated seasonal horticulture	5.7.0 Transport and communication	
		3.5.0 Seasonal horticulture	4.5.1 Irrigated fruits	5.7.1 Airports/aerodromes	
		3.5.1 Fruits	4.5.2 Irrigated nuts	5.7.2 Roads	
		3.5.2 Nuts	4.5.3 Irrigated flowers & bulbs	5.7.3 Railways	
		3.5.3 Flowers & bulbs	4.5.4 Irrigated vegetables & herbs	5.7.4 Ports and water transport	
The ALUM Classification is based on a scheme		3.5.4 Vegetables & herbs		5.7.5 Navigation and communication	
t has been refined collaboratively by partners i			4.6.0 Irrigated land in transition	5 <u></u>	
Agriculture; New South Wales Department of N		3.6.0 Land in transition	4.6.1 Degraded irrigated land	5.8.0 Mining	1
epartment of Lands, Planning and Environme		3.6.1 Degraded land	4.6.2 Abandoned irrigated land	5.8.1 Mines	
and and Biodiversity Conservation; Queensla		3.6.2 Abandoned land	4.6.3 Irrigated land under rehabilitation	5.8.2 Quarries	
nd Mines; Tasmanian Department of Primary		3.6.3 Land under rehabilitation	4.6.4 No defined use (irrigation)	5.8.3 Tailings	
/ictorian Department of Primary Industries; the		3.6.4 No defined use			
Audit; the Murray-Darling Basin Commission; th		When the states to be a state of the	5/	5.9.0 Waste treatment and disposal	
Rural Sciences and Department of Agriculture	Fisheries and Forestry.			5.9.1 Stormwater	
e o su name a a ser da ser esta esta esta de la defensa de la ser de la				5.9.2 Landfill	
				5.9.3 Solid garbage	
				5.9.4 Incinerators	
				5.9.5 Sewage	

Land-use classes for 2CSalt hydrology models

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23	
leared	Other minimal use	1.3.0	•	j9m	109	Cliff/rock outcrop	
		1.3.4	Rehabilitation	j	119	Constructed grass waterway for water disposal. Part of a soil erosion control system carrying run-off from graded banks	
				f5j	125	Salt treatment or salt demonstration site (discharge a recharge sites)	
					125E	Salt treatment or salt demonstration site (discharge and recharge sites) - exotic species	
	Production forestry	2.2.0		nsg	109A	Cliff/rock outcrop	
	Production from dryland	3.6.1	Degraded land	e4h	221	Abandoned gypsum mine	
	agriculture and plantations				43	Derelict mining land	
		3.6.3	Land under rehabilitation	e4f	43A 49	Derelict mining land within a State Forest Restored mining lands	
	Intensive animal production	5.2.0		d3.	26	Intensive animal production	
	interiore unimal production	0.2.0		uo.	26a	Intensive animal production - alpaca	
					26e	Intensive animal production - emu	
					26g	Intensive animal production - goat	
				d3f	26h	Intensive animal production - horse	
				031	260 26r	Intensive animal production - ostriches Intensive animal production - deer	
		5.2.2	Cattle	d3c	26b	Intensive animal production - beef feedlot	
		5.2.3	Sheep	d3.	26s	Intensive animal production - sheep	
	Services	5.5.0		h7.	179	Levee bank for urban area	
		5.5.1	Commercial services	h7a	135	Saleyard	
	Mining	5.5.3	Recreation and culture	i8.	166	Illegal recreation	
	Mining	5.8.1	Mines	e4. e4a	209 44	Gypsum mine and associated processing Mine site	
				04a	44A	Mine site within a State Forest	
		5.8.2	Quarries		7	Quarry	
					7A	Quarry - within a State Forest	
		5.8.3	Tailings	e4b41	133	Stock pile of mined material, located remotely from mine	
				e4b	70	site. Often situated next to railway lines or at ports Fly ash dam/spoil dump	
				e4b	78 78A	Fly ash dam/spoil dump within a State Forest	
	Waste treatment and	5.9.0		j9.	193	Disposal site for horticultural waste	
	disposal			j9i	237	Waste dump from sawmill site	
		5.9.2	Landfill	h7g	33	Landfill (garbage)	
					33A	Landfill (garbage) within a State Forest	
	River	6.3.0		f5c	63	River navigation structure	
onservatio	n Nature conservation	1.1.3	National park	j9f nsg	71 MP	Flood or irrigation structure Marine park	
011301 Valio		1.1.0		nisg	NP	National park	
					NR	Nature reserve	
		1.1.7	Other conserved area	j9o	157	Cultural heritage site - aboriginal or european	
					169	Protected area managed for conservation of specific	
	Managed resource	1.2.0		h7.	210	natural features. Land vested with an aboriginal land council	
	protection	1.2.2	Surface water supply	j9r	148	SCA unused land	
	Other minimal use	1.3.2	Stock route	j9c	117F	Wide road reserve or TSR, heavily timbered but with som grazing	
					117TS	Wide road reserve or TSR, with some grazing - with a woody vegetation cover of woodland	
		1.3.3	Remnant native cover	j	167	Crown reserve	
				i8.	191	Riparian strip in urban and other developed areas but with minimal use	
				g6t	67	Native woody shrub	
		1.3.4	Rehabilitation	nsg	143	Regeneration area in reference to Section 47 notice under the NVC Act	
				a Gl	145	Lands fenced and treated for land degradation problems Land fenced for riparian management	
				g6l i9o	146 199	Regeneration reserve (in semi arid or arid area)	
	Production forestry	2.2.0		nsg	83A	Degraded land (salt site, eroded area) within a State Fore	
		ļ			SF	State forest	
	Production from dryland	3.6.4	No defined use		97	No identified use	
	agriculture and plantations Services	5.5.3	Recreation and culture	nsg	SRA	State recreation area	
	Transport and	5.7.2	Roads	j9c	19A	Road or road reserve within a State Forest	
	communication			,,	19TI	Road or road reserve - with a woody vegetation cover of	
					19TV	isolated trees Road or road reserve - with a woody vegetation cover of	
ropping	Cropping	3.3.0		a0a	1	open woodland Cropping - continuous or rotation	
, opping	Cropping	5.5.0		a0a a0g	186	Cropping within controlled flood system; prohibition on the	
					187	construction of barriers to the movement of water Cropping within bed of an ephemeral lake; lake is regulat	
					188	Cropping within bed of an ephemeral lake; lake is not regulated or above regulation level	
				a0a	1A	Cropping - continuous or rotation within a State Forest	
					1Q	Cropping - with a fixed irrigation system not used at the	
					l	time of mapping	

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
group	outegory	couc		couc	1Q(1)	Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - laser levelled with no
						apparent tail water reticulation and no on-farm storage of tail water
					1Q(2)	Cropping - with a fixed irrigation system not used at the
					1Q(3)	time of mapping: irrigation practice - contour irrigation Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - laser levelled with tail
					1Q(4)	water reticulation and on-farm storage of tail water Cropping - with a fixed irrigation system not used at the
					1Q(5)	time of mapping; irrigation practice - centre pivot Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - travel irrigator
					1Q(6)	Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - drip irrigation
					1Q(7)	Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - sub-surface irrigation
					1Q(8)	Cropping - with a fixed irrigation system not used at the time of mapping; irrigation practice - sprinkler irrigation
					1TI	Cropping - continuous or rotation - with a woody vegetation cover of isolated trees
					1TS	Cropping - continuous or rotation - with a woody vegetation cover of woodland
					1TV	Cropping - continuous or rotation - with a woody vegetation cover of open woodland
				a0g	232	Cropping within an ephemeral wetland (does not include cropping within an ephemeral lake - see classes 186 & 187)
					232TS	Cropping within an ephemeral wetland - with a woody vegetation cover of woodland
		3.3.3 3.3.5	Hay & silage Sugar	a0d a0f	84 161	Fodder crop Sugar cane
		3.3.8	Legumes	a0a	140	Cropping of legumes for seed - chickpeas, lupins, vetches,
	Channel/aqueduct	6.4.0		f5.	121 121R	field beans Drainage depression in cropping paddock Drainage depression in grouping paddock with more than
					1218	Drainage depression in cropping paddock - with more than 30% of ground area having regeneration of native tree species
DryForb	Perennial horticulture	3.4.0		b1e	174	Bamboo plantation (for food)
		3.4.2 3.4.6	Oleaginous fruits Flowers & bulbs	b b1.	154 172	Jojoba planting Scented oil production (eg lavender)
		3.4.7	Vegetables & herbs	b1c	203	Perennial horticulture - eg asparagus
	Seasonal horticulture	3.5.0		b1f	37	Seed production including clover seed
		3.5.3	Flowers & bulbs	b1c	116	Cut flowers & herbs
	Irrigated modified pastures	3.5.4 4.2.0	Vegetables & herbs	a0e	39 88	Vegetables Turf farming
	Irrigated seasonal horticulture	4.5.3	Irrigated flowers & bulbs	b1.	89	Bulb production for flower trade
Grazing	Managed resource	1.2.2	Surface water supply	j9q	58	Foreshores land to State Water dam
	protection				58R	Foreshores land to State Water dam - with more than 30% of ground area having regeneration of native tree species
					58SD	Foreshores land to State Water dam - with a woody vegetation cover of closed shrubland
						Foreshores land to State Water dam - with a woody vegetation cover of shrubland
					58TM	Foreshores land to State Water dam - with a woody vegetation cover of open forest
					58TS	Foreshores land to State Water dam - with a woody vegetation cover of woodland
	Other minimal use	1.3.0		c2a	231	Areas of dense standing dead trees with the ground cover consisting of volunteer species such as bracken, blady grass and tea tree.
		1.3.2	Stock route	j9c	117	Wide road reserve or TSR, with some grazing
		1.3.4	Rehabilitation	e4.	82	Grassland within mining lease
					82L	Grassland within mining lease with previous evidence of cultivation
					82R	Grassland within mining lease - with more than 30% of ground area having regeneration of native tree species
					82TM	Grassland within mining lease - with a woody vegetation cover of open forest
					82TS 82TV	Grassland within mining lease - with a woody vegetation cover of woodland Grassland within mining lease - with a woody vegetation
	Grazing natural vegetation	2.1.0		c2a	168	Grassiand within mining lease - with a woody vegetation cover of open woodland Grazing of native vegetation. Grazing of domestic stock on
				020	168L	essentially unmodified native vegetation. Grazing of domestic stock of Grazing of native vegetation. Grazing of domestic stock on
						essentially unmodified native vegetation, with previous evidence of cultivation
					168MS	Grazing of native vegetation. Grazing of domestic stock on essentially unmodified native vegetation - with a woody vegetation cover of mallee woodland

ALUM version 6 major	ALUM V6		SCALD	LUMAP	Detailed land-use classes version 22
category	code	description	code	code 168R	Detailed land-use class: version 23 Grazing of native vegetation. Grazing of domestic stock or
				IONK	essentially unmodified native vegetation - with more than 30% of ground area having regeneration of native tree
				168SR	species Grazing of native vegetation. Grazing of domestic stock o essentially unmodified native vegetation - with more than
				168TS	30% of ground area having native shrub regeneration Grazing of native vegetation. Grazing of domestic stock or essentially unmodified native vegetation - with a woody
					vegetation cover of woodland
				170	Grazing - Residual strips (block or linear feature) of native grassland within cultivated paddock. Strips contain
				170R	scattered to isolated trees only. Grazing - Residual strips (block or linear feature) of native grassland within cultivated paddock. Strips contain
				170TM	scattered to isolated trees only - with more than 30% of around area having native shrub regeneration. Grazing - Residual strips (block or linear feature) of native
				47010	grassland within cultivated paddock - with a woody vegetation cover of open forest
				170TS	Grazing - Residual strips (block or linear feature) of native grassland within cultivated paddock - with a woody vegetation cover of woodland
				182	Grazing within bed of an ephemeral lake or watercourse; lake or watercourse are not regulated or above regulation level
				183 183R	Rangeland grazing Rangeland grazing - with more than 30% of ground area
				183SR	having regeneration of native tree species Rangeland grazing - with more than 30% of ground area
				184	having native shrub regeneration Grazing within controlled flood system; prohibition on the
				-	construction of barriers to the movement of water
				189 201	Grazing within bed of an ephemeral lake; lake is regulated Low intensity grazing (of native pastures) and low intensity
				202	forestry combined Grazing within controlled flood management systems
				213	Grazing of areas on the western floodplains with heavy
				217	clays and subject to prolonged wetness after floods Grazing pastures within the Macquarie Marshes landscap
				217R	Grazing pastures within the Macquarie Marshes landscap - with more than 30% of ground area having regeneration
				218	of native tree species Grazing of areas on the western floodplains with heavy clays and subject to prolonged wetness after floods; area
				220	covered with dense trees Grazing within bed of an ephemeral lake or watercourse; lake or watercourse are not regulated or above regulation level with a dense shrub or tree cover
				233	Grazing within an ephemeral wetland (does not include cropping within an ephemeral lake - see classes 182 & 189)
				233R	Grazing within an ephemeral wetland - with more than 30 ^d of ground area having regeneration of native tree species
				233TD	Grazing within an ephemeral wetland - with a woody vegetation cover of closed forest
				233TM	Grazing within an ephemeral wetland - with a woody vegetation cover of open forest
				233TS	Grazing within an ephemeral wetland - with a woody vegetation cover of woodland
Production forestry	2.2.0		nsg	101A	Secondary grassland in forested areas within a State Forest
				45A	Airstrip (local/farmer, grass or bare surface, not sealed)
				47A 4A	Energy corridor within a State Forest Volunteer, naturalised, native or improved pastures within
				4A 4RA	State Forest Volunteer, naturalised, native or improved pastures within Volunteer, naturalised, native or improved pastures - with
					more than 30% of ground area having regeneration of native tree species and within a State Forest
				4SRA	Volunteer, naturalised, native or improved pastures - with more than 30% of ground area having native shrub regeneration and within a State Forest
Production from dryland	3.0.0		c2a	5A 137	Sown, improved perennial pastures within a State Forest Firebreak
agriculture and plantations					
Grazing modified pastures	3.2.0		c2f	175 205	Grazing of riparian land Grazing land - previously mined for gemstones
			c2b	211	Grazing of areas with water ponding treatments
			g9j	215	Regeneration within sites cleared under a 'window-pane'
			c2b	242	Grazing of areas with chequer-board treatment for scald reclamation
	3.2.1	Native/exotic pasture		101	Secondary grassland in forested areas Wide road reserve or TSR, currently used for intensive
		mosaic		117G	

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
-	¥ /	-		c2.	144	Agro forestry
					144E	Agro forestry - exotic species
				c2b	4	Volunteer, naturalised, native or improved pastures
					4L	Volunteer, naturalised, native or improved pastures, with
					4Q	previous evidence of cultivation Volunteer, naturalised, native or improved pastures - with
					4Q	fixed irrigation system not used at the time of mapping
					4Q(1)	Volunteer, naturalised, native or improved pastures - with
					102(1)	fixed irrigation system not used at the time of mapping;
						irrigation practice - laser levelled with no apparent tail wate
						reticulation and no on-farm storage of tail water
					4Q(2)	Volunteer, naturalised, native or improved pastures - with
						fixed irrigation system not used at the time of mapping;
						irrigation practice - contour irrigation
					4Q(3)	Volunteer, naturalised, native or improved pastures - with
						fixed irrigation system not used at the time of mapping;
						irrigation practice - laser levelled with tail water reticulation and on-farm storage of tail water
					4Q(4)	Volunteer, naturalised, native or improved pastures - with
					102(1)	fixed irrigation system not used at the time of mapping;
						irrigation practice - centre pivot
					4Q(5)	Volunteer, naturalised, native or improved pastures - with
					. ,	fixed irrigation system not used at the time of mapping;
						irrigation practice - travel irrigator
					4R	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having regeneration of
						native tree species
					4RTI	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having regeneration of native tree species and a woody vegetation cover of
						isolated trees
					4RTS	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having regeneration of
						native tree species and a woody vegetation cover of
						woodland
					4RTV	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having regeneration of
						native tree species and a woody vegetation cover of open
					4SD	woodland Volunteer, naturalised or improved pastures - with a woody
					430	vegetation cover of closed shrubland
					4SM	Volunteer, naturalised or improved pastures - with a woody
						vegetation cover of shrubland
					4SR	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having native shrub
						regeneration
					4SS	Volunteer, naturalised or improved pastures - with a woody
					401/	vegetation cover of open shrubland
					4SV	Volunteer, naturalised or improved pastures - with a woody
					4TD	vegetation cover of sparse shrubland Volunteer, naturalised or improved pastures - with a woody
					410	vegetation cover of closed forest
					4TI	Volunteer, naturalised or improved pastures - with a woody
						vegetation cover of isolated trees
					4TM	Volunteer, naturalised or improved pastures - with a woody
						vegetation cover of open forest
					4TS	Volunteer, naturalised or improved pastures - with a woody
					4717	vegetation cover of woodland
					4TV	Volunteer, naturalised or improved pastures - with a woody vegetation cover of open woodland
					4W	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having exotic weeds
					4WTI	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having exotic weeds and a
						woody vegetation cover of isolated trees
					4WTS	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having exotic weeds and a
					414/	woody vegetation cover of woodland
					4WTV	Volunteer, naturalised, native or improved pastures - with
						more than 30% of ground area having exotic weeds and a woody vegetation cover of open woodland
				c2c	5	Sown, improved perennial pastures
				020	5Q	Sown, improved pastures - with fixed irrigation system not
						used at the time of mapping
					5Q(1)	Sown, improved pastures - with fixed irrigation system not
						used at the time of mapping; irrigation practice - laser
						levelled with no apparent tail water reticulation and no on-
						farm storage of tail water
					5Q(2)	Sown, improved pastures - with fixed irrigation system not
						used at the time of mapping; irrigation practice - contour
						irrigation
					5Q(3)	Sown, improved pastures - with fixed irrigation system not
						used at the time of mapping; irrigation practice - laser
						levelled with tail water reticulation and on-farm storage of
	1	1 I		1	1	tail water

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
					5Q(4)	Sown, improved pastures - with fixed irrigation system not used at the time of mapping; irrigation practice - centre pivot
					5Q(5)	Sown, improved pastures - with fixed irrigation system not used at the time of mapping; irrigation practice - travel irrigator
					5R	Sown, improved pastures - with more than 30% of ground area having regeneration of native tree species
					5TI	Sown, improved perennial pastures - with a woody
					5TM	Sown, improved perennial pastures - with a woody
					5TS	vegetation cover of open forest Sown, improved perennial pastures - with a woody
					5TV	vegetation cover of woodland Sown, improved perennial pastures - with a woody
					5W	vegetation cover of open woodland Sown, improved perennial pastures - with more than 30%
				g6m	68	of ground area having exotic weeds Recently cleared land (cleared of forest vegetation as yet
					68R	not covered by crop or pasture) Recently cleared land (cleared of forest vegetation as yet not covered by crop or pasture) - with more than 30% of
				c2a	184L	ground area having regeneration of native tree species Grazing within controlled flood system; prohibition on the
				02a		construction of barriers to the movement of water; evidence of previous cultivation
		2.0.0	Woodu fe data a la sta	-0	189L	Grazing within bed of an ephemeral lake; lake is regulated evidence of previous cultivation
		3.2.2	Woody fodder plants	c2g	164	Saltbush plantings (for grazing purposes and not as part of a salinity control program)
	Cropping	3.3.3	Hay & silage	a0d	84Q	Fodder crop - with a fixed irrigation system not used at the time of mapping
	Production from dryland agriculture and plantations	3.6.1	Degraded land	c2b c2i^^d	204 48W	Grazing of salt affected land Lantana, blackberry and other exotic weed infested grazing
					83	land Degraded land (salt site, eroded area)
					83TV	Degraded land (salt site, eroded area) - with a woody vegetation cover of open woodland
		3.6.3 3.6.4	Land under rehabilitation No defined use	e4f j9f	49A 134	Restored mining lands within a State Forest Flood refuge (constructed features located within flood
	Intensive uses	5.0.0		d3.	141	prone areas) Rural Quarantine Site (animals, crops, horticulture &
				h7.	236	pastures) Levee for flood protection around house and farm
	Residential	5.4.2	Rural residential	h7e	151	infrastructure Hobby farm (as distinct from rural residential. Small, single
	Services	5.5.3	Recreation and culture	i8b	130	blocks no longer used for rural purposes Rural recreation. Blocks are isolated and not associated
	Utilities	5.6.0		c2b	113	with an urban area Land controlled by Macquarie Generation (Hunter Valley),
					113R	currently unused or lightly grazed Land controlled by Macquarie Generation (Hunter Valley),
						currently unused or lightly grazed - with more than 30% of ground area having regeneration of native tree species
					113TM	Land controlled by Macquarie Generation (Hunter Valley), currently unused or lightly grazed - with a woody vegetation
					113TS	cover of open forest Land controlled by Macquarie Generation (Hunter Valley),
						currently unused or lightly grazed - with a woody vegetation cover of woodland
	Transport and	5.7.0		j9a j9j	47 45	Energy corridor Airstrip (local/farmer, grass or bare surface, not sealed)
	communication					
	Channel/aqueduct	6.4.0		f5. j9f	181 185	Bore drain (not longer used) Waterway associated with controlled flooding/opportunistic
Irrforb10	Irrigated perennial	4.4.0		b1e	1741	cropping systems Bamboo plantation (for food) - irrigated
	horticulture	4.4.2	Irrigated oleaginous fruits	b	1541	Jojoba planting - irrigated
	Irrigoted apparent!	4.4.7	Irrigated vegetables &	b1c	2031	Perennial horticulture - eg asparagus - irrigated
	Irrigated seasonal horticulture	4.5.4	herbs		<u>39</u> 391(1)	Vegetables - irrigated Vegetables - irrigated: irrigation practice - laser levelled with no apparent tail water reticulation and no on-farm
					39I(4) 39I(8)	storage of tail water Vegetables - irrigated; irrigation practice - centre pivot Vegetables - irrigated; irrigation practice; irrigation practice
					391(9)	- sprinkler irrigation Vegetables - irrigated; irrigation practice - furrow irrigation
Irrforb15	Irrigated modified pastures	4.2.0	Irrigotod flowers 9 holler	a0e	881	Turf farming - irrigated
Irrforb5	Irrigated perennial horticulture	4.4.6	Irrigated flowers & bulbs	b1.	1721	Scented oil production (eg lavender) - irrigated
	Irrigated seasonal horticulture	4.5.3	4	b1c	116l 116l(5)	Cut flowers & herbs - irrigated Cut flowers & herbs - irrigated: irrigation practice - travel
						irrigator

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
Irrig10	Irrigated cropping	4.3.0		a0c	11(3)	Cropping - continuous or rotation - irrigated; irrigation practice - laser levelled with tail water reticulation and on-
					11(4)	farm storage of tail water Cropping - continuous or rotation - irrigated; irrigation
					1I(5)	practice - centre pivot Cropping - continuous or rotation - irrigated; irrigation
		4.3.5	Irrigated sugar	a0f	1611	practice - travel irrigator Sugar cane - irrigated
rrig15	Services	5.5.3	Recreation and culture	i8c	222	Golf courses, greens and fairways with internal housing allotments
	Waste treatment and disposal	5.9.5	Sewage	c2f08	291	Areas irrigated with effluent from sewage disposal ponds
rrig20	Cropping Irrigated cropping	3.3.6 4.3.1	Cotton Irrigated cereals	a0a a0c	129 40	Cotton Rice
	inigated cropping	4.5.1	inigated cereals	400	401	Irrigated rice
		4.3.6	Irrigated cotton	aoc	40I(2) 129I	Irrigated rice; irrigation practice - contour irrigation Cotton - irrigated
					1291(1)	Cotton - irrigated; irrigation practice - laser levelled with no apparent tail water reticulation and no on-farm storage of tail water
					129I(3) 129I(5)	Cotton - irrigated; irrigation practice - laser levelled with tai water reticulation and on-farm storage of tail water Cotton - irrigated; irrigation practice - travel irrigator
Irrig5	Production from dryland	3.0.0		c2b	111	Grassland areas (eg mown/slashed grass areas) within
	agriculture and plantations Grazing modified pastures	3.2.2	Woody fodder plants	c2g	164Q	vineyards Saltbush plantings (for grazing purposes and not as part of a salinity control program) - with a fixed irrigation system
	Irrigated modified pastures	4.2.0		c2f	6	not used at the time of mapping Irrigated pastures
	inigated noullied pastures	4.2.0		621	6(1)	Irrigated pastures; irrigation practice - laser levelled with no apparent tail water reticulation and no on-farm storage of tail water
					6(2) 6(3)	Irrigated pastures; irrigation practice - contour irrigation Irrigated pastures; irrigation practice - laser levelled with
					6(4)	tail water reticulation and on-farm storage of tail water Irrigated pastures; irrigation practice - centre pivot
					6(5) 6(8)	Irrigated pastures; irrigation practice - travel irrigator Irrigated pastures; irrigation practice - sprinkler irrigation
	Grazing modified pastures	4.2.1	Irrigated woody fodder plants	c2g	164I(1)	Saltbush plantings (for grazing purposes and not as part of a salinity control program): irrigation practice - laser levelled with no apparent tail water reticulation and no on-
					164I(3)	farm storage of tail water Saltbush plantings (for grazing purposes and not as part of a salinity control program); irrigation practice - laser levelled with tail water reticulation and on-farm storage of
	Irrigated cropping	4.3.0		a0c	11	tail water Cropping - continuous or rotation - irrigated
					11(1)	Cropping - continuous or rotation - irrigated; irrigation practice - laser levelled with no apparent tail water reticulation and no on-farm storage of tail water
					11(2)	Cropping - continuous or rotation - irrigated; irrigation practice - contour irrigation
					11(6)	Cropping - continuous or rotation - irrigated; irrigation practice - drip irrigation
					11(7)	Cropping - continuous or rotation - irrigated; irrigation practice - sub-surface irrigation
					11(8)	Cropping - continuous or rotation - irrigated; irrigation practice - sprinkler irrigation
		4.3.3	Irrigated hay & silage	a0d	841	Fodder crop - irrigated Fodder crop - irrigated: irrigation practice - laser levelled
					84I(1)	with no apparent tail water reticulation and no on-farm storage of tail water
		4.3.8	Irrigated legumes	a0c	140I 140I(3)	Cropping of legumes for seed - chickpeas, lupins, vetches, field beans - irrigated Cropping of legumes for seed - chickpeas, lupins, vetches,
					1401(3)	field beans - irrigated; irrigation practice - laser levelled with tail water reticulation and on-farm storage of tail water
	Intensive animal production Waste treatment and	5.2.0		d3.	90 62	Horse stud and/or horse breeding facilities
	disposal	5.9.0		f5i	62	Irrigation from abattoir and other industry
Irrig6	Production from dryland agriculture and plantations	3.0.0		c2b	111TS	Grassland areas (eg mown/slashed grass areas) within vinevards - with a woody vegetation cover of woodland
IrrTree10	Irrigated cropping	4.3.2	Irrigated beverage & spice crops	b1e (17 or 18)	1731	Tea and Coffee plantation - irrigated
	Irrigated perennial	4.4.0		b1i	1261	Truffle production - irrigated
	horticulture	4.4.1	Irrigated tree fruits	b1e (20) b1a11	176l 102l	Tea Tree Plantation Banana plantation - irrigated
				b1a	2l 2l(9)	Orchard - tree fruits - irrigated Orchard - tree fruits - irrigated; irrigation practice - furrow irrigation
	_	4.4.3	Irrigated tree nuts	b1a14	1041	Pecan, macadamia and other nuts - irrigated
IrrTree5		4.4.1	Irrigated tree fruits	b1a	21(6)	Orchard - tree fruits - irrigated; irrigation practice - drip irrigation

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
					381(9)	Olives - irrigated; irrigation practice - furrow irrigation
		4.4.3	Irrigated tree nuts	b1a14	1041(6)	Pecan, macadamia and other nuts - irrigated; irrigation
		4.4.4	Irrigated vine fruits	b1b	31	practice - drip irrigation Vineyard - grape and other vine fruits - irrigated
		4.4.4	ingaled vine nulls	010	31(6)	Vineyard - grape and other vine fruits - irrigated; Vineyard - grape and other vine fruits - irrigated; irrigation
					21(0)	practice - drip irrigation
					31(9)	Vineyard - grape and other vine fruits - irrigated; irrigation practice - furrow irrigation
River	Grazing natural vegetation	2.1.0		c2a	216	Flood runners in western NSW. (Vegetation is indicative of
					216R	a more prolonged period of inundation or wetness.) Flood runners in western NSW - with more than 30% of
						ground area having regeneration of native tree species
					216TS	Flood runners in western NSW - with a woody vegetation cover of woodland
	Production forestry	2.2.0		nsg	8A	Farm dam within a State Forest
	Intensive animal production	5.2.6	Aquaculture	d3e	34	Aquaculture - fish, prawn, yabby or beach worm farm
	Services	5.5.0		f5c	150	Training facility for marine pilots
	Transport and	5.7.4	Ports and water	f5d	100	Marina
	communication		transport	f5.	196 197	Mooring or jetty for house boat Boat ramp
	Waste treatment and	5.9.5	Sewage	j9k	29	Sewage disposal ponds
	disposal					
	Lake	6.1.0		f5a	105	Coastal lake
				f5.	76 76TD	Lagoon or inland lake
					7610	Lagoon or inland lake - with a woody vegetation cover of closed forest
					76TM	Lagoon or inland lake - with a woody vegetation cover of
						open forest
					76TS	Lagoon or inland lake - with a woody vegetation cover of
		611	Laka concervation	-	96	woodland Inland salt lake
	Reservoir or dam	6.1.1 6.2.0	Lake - conservation	f5g	86 132	Irrigation dam
	Reservoir of dam	0.2.0		isg	132(Q)	Irrigation dam - not used at the time of mapping
					132(Q)	Irrigation dam - under construction or constructed betweer
					1021	the date of the satellite imagery and the date of the aerial
						photography
					8	Farm dam
				f5.	85	Temporary water storage area (eg rice farming -
						opportunistic storage of water in natural depressions
		6.2.1	Water storage and	f5g	123	Ancillary (saddle) wall to reservoir
			treatment		46	Reservoir
					46A	Reservoir within a State Forest
					80	Water supply pressure reservoir including water filtration plant
		6.2.3	Evaporation basin	f5i	207	Disposal dam, depression or lake bed for irrigation tail
						water
				f5j	91	Evaporation basin
	River	6.2.4 6.3.0	Effluent pond	f5i g6l	124 108	Effluent ponds from intensive animal industries River and riparian vegetation where the river channel is
	River	0.3.0		yoi	100	filled by more than 50% of phragmites or cumbungi
					12	River, creek or other incised drainage feature; includes
						cowals in western NSW
					12A	River, creek or other incised drainage feature within a
					4000	State Forest; includes cowals in western NSW
					12SD	River, creek or other incised drainage feature; includes cowals in western NSW - with a woody vegetation cover of
						closed shrubland
					12SM	River, creek or other incised drainage feature; includes
						cowals in western NSW - with a woody vegetation cover of
					12TI	shrubland River, creek or other incised drainage feature; includes
					1211	cowals in western NSW - with a woody vegetation cover of
						isolated trees
					12TM	River, creek or other incised drainage feature; includes
						cowals in western NSW - with a woody vegetation cover of
					12TS	open forest River, creek or other incised drainage feature: includes
					1215	River, creek or other incised drainage feature; includes cowals in western NSW - with a woody vegetation cover or
						woodland
					12TV	River, creek or other incised drainage feature; includes
						cowals in western NSW - with a woody vegetation cover of
				02000	104	open woodland
				c2ew	131	Flood chute (flood runners that are filled with water during and after floods) and designated floodway in irrigation
						districts, localities
				f5.	219	River diversion work (inland, not coastal)
				f5p	51	River training work
		6.3.3	River - intensive use	f5c	107	Canal (canal estate, navigation canal)
	Channel/aqueduct	6.4.0	Cummlu	f5.	180	Bore drain (active)
		6.4.1	Supply channel/aqueduct	j9q	128	Water supply channel (non irrigation system eg Sydney water supply)
			onannovaqueuuol	j9f	136	Irrigation supply channel
				,=.	136Y	Irrigation supply channel - under construction or
				1		constructed between the date of the satellite imagery and
		1	1	1		the date of the aerial photography

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
<u></u>		6.4.2	Drainage channel/aqueduct	f5h	57	Drainage channel (from irrigation system or a channel draining a swamp; base of channel is lined)
					79	Drainage or water supply channel - base of channel is not lined
	Estuary/coastal waters	6.6.0		k0o	106	Estuarine waters
		6.6.2	Estuary/coastal waters - production	k	158	Submerged oyster leases
Sand	Managed resource	1.2.4	Landscape	f5.	99	Foreshore protection - vegetated fore dune (coastal feature)
	Other minimal use	1.3.4	Rehabilitation	e4f	95	Restored sand mining area
	Services	5.5.3	Recreation and culture	f5n	64	Beach
	Estuary/coastal waters	6.6.0	Recreation and culture	1511	96	Sand spit/estuarine sand island
Scrub	Nature conservation	1.1.7	Other conserved area	i8.	198	Crown reserve with public access
bulub	Nature conservation	1.1.7	Other conserved area	j90	27	Private conservation agreement
	Managed resource protection	1.2.2	Surface water supply	j90 j9r	59	Foreshores or reserved land to water supply dam (Sydney Water, Hunter Water, SMHEA or Public Works Dam)
	Other minimal use	1.3.3	Remnant native cover	g6z	13 13A	Native forest - filter strips in softwood plantation Native forest - filter strips in softwood plantation and within a State Forest
					13W	Native forest - filter strips in softwood plantation with heavy weed infestation (mostly blackberry)
		1		g6n	66	Recently burnt areas (woody vegetation)
		1		g6a	9	Native forest
		1.3.4	Rehabilitation	g6j	11SR	Native woody species - regeneration comprising shrub or understorey species
					11TV	Native forest - regeneration - with a woody vegetation cover of open woodland
				g6t	162	Dense shrub growth - limited to nil grazing capacity
				e4.	214	Woodlands within mining lease
	Grazing natural vegetation	2.1.0		c2a	168TM	Grazing of native vegetation. Grazing of domestic stock on essentially unmodified native vegetation - with a woody vegetation cover of open forest
	Production forestry	2.2.0		nsg	41A	Hardwood plantation within a State Forest
	rioddollorrioroolly	2.2.1	Wood production	g6b	10	Native forest - logged
		2.2.1	Wood production	gob	10A	Native forest - logged and within a State Forest
				g6j	11A	Native forest - regeneration and within a State Forest
				g6a	9A	Native forest and within a State Forest
	Plantation forestry	3.1.0		g6x	15	Softwood plantation - nursery
	Flantation lorestry	3.1.0	Hardwood production		177	Rainforest plantation
		3.1.1	Hardwood production	g6g	41	Hardwood plantation
		3.1.2	Softward production	~ <u>~</u>	14	
		3.1.2	Softwood production	g6e	142	Softwood plantation Pine planting interspersed amongst eucalypt/shrub forest and/or areas with poor to nil establishment
					14A 206	Softwood plantation and within a State Forest Pine plantation - previously used for mining or quarrying activity
				g6p	52	Poplar plantation
		3.1.4	Environmental	g6c	24	Windbreak or tree corridor
					24R 24TS	Windbreak or tree corridor - with more than 30% of ground area having regeneration of native tree species Windbreak or tree corridor - with a woody vegetation cover
					2410 24TV	of woodland Windbreak or tree corridor - with a woody vegetation cover
		1				of open woodland
		1		g6d	25	Tree lot
		1		g6c	25E	Tree lot - exotic species
				g6d	25N 25Q(1)	Tree lot - native species Tree lot - with a fixed irrigation system not used at the time of mapping; irrigation practice - laser levelled with no apparent tail water reticulation and no on-farm storage of
		1			05771	tail water
	Grazing modified pastures	3.2.1	Native/exotic pasture mosaic	g6k	25TV 70	Tree lot - with a woody vegetation cover of open woodland Woodland (unmodified native vegetation)
	Production from dryland	3.6.1	Degraded land	g6i	110	Forest dominated by camphor laurel
	agriculture and plantations	3.6.3	Land under rehabilitation	g6j	11	Native forest - regeneration
	Irrigated plantation forestry	4.1.0		g6x	151	Softwood plantation - nursery - irrigated
		4.1.1	Irrigated hardwood production	g6g	411	Hardwood plantation - irrigated
		4.1.2	Irrigated softwood production	g6w	141	Softwood plantation - irrigated
		4.1.4	Irrigated environmental	g6d	25I 25I(1) 25I(3)	Tree lot - irrigated Tree lot - irrigated; irrigation practice - laser levelled with n apparent tail water reticulation and no on-farm storage of tail water Tree lot - irrigated; irrigation practice - laser levelled with
					L	tail water reticulation and on-farm storage of tail water
	Residential	5.4.3	Rural living	h7e	152	Small to medium forested or wilderness blocks with isolated residential buildings. (Rural residential but the forested or wilderness feature of the block is worth noting.)
	Services	5.5.4	Defence facilities	j9l	32	Defence facility
	River	6.3.0		g6i	30	Riparian vegetation - exotic species (principally willow)

Hydro group	ALUM version 6 major category	ALUM V6 code	ALUM V6 detailed description	SCALD code	LUMAP code	Detailed land-use class: version 23
Jioup	Cropping	3.3.2	Beverage & spice crops	b1e (17 or 18)	173	Tea and Coffee plantation
	Perennial horticulture	3.4.0		b1.	120	Eucalyptus oil plantation
				b1i	126	Truffle production
				b1e (20)	176	Tea Tree Plantation - irrigated
				b1g	35	Eucalypts and other Australian native species for cut
						flower arrangements
		3.4.1	Tree fruits	g60	69 102	Native shrub plantation (eg tea tree)
		3.4.1	Tree truits	b1a11 b1a	2	Banana plantation Orchard - tree fruits
		3.4.2	Oleaginous fruits	bia	38	Olives
		3.4.3	Tree nuts	b1a14	104	Pecan, macadamia and other nuts
		3.4.4	Vine fruits	b1b	3	Vineyard - grape and other vine fruits
	Production from dryland	3.6.2	Abandoned land	b1.	87	Abandoned orchard and vine lands; trees/vines not
	agriculture and plantations					maintained and may be dying; regrowth of native shrubs
				_	1001	and trees is occurring
	Irrigated perennial horticulture	4.4.0		b1g	120I 35I	Eucalyptus oil plantation - irrigated Eucalypts and other Australian native species for cut flower
	noniculture			big	301	arrangements - irrigated
rban	Production forestry	2.2.0		nsg	16A	Industrial/commercial within a State Forest
					31A	Urban recreation within a State Forest
					92A	Government and private facilities - gaol, training centre,
						school, religious institutions & training centres, religious
						retreats within a State Forest
	Perennial horticulture	3.4.4	Vine fruits	b1c	118	Vineyards with residential facilities scattered amongst
			Industry I. C. M. M.	4	4401	plantings (hobby, retreat or tourist feature)
	Irrigated perennial	4.4.4	Irrigated vine fruits		1181	Vineyards with residential facilities scattered amongst
	horticulture Intensive uses	FOO		h7.	400	plantings (hobby, retreat or tourist feature) - irrigated
	milensive uses	5.0.0		n7.	139	Farm Infrastructure - house, machinery & storage sheds and garden areas
					200	Irrigation farm infrastructure; miscellaneous lands within
					200	farms including access roads, bund walls, buildings and
						services
	Intensive horticulture	5.1.0		b1d	42	Nursery
					421	Nursery - irrigated
		5.1.1	Shade houses	b1.	81	Shade house or glass house (includes hydroponic use)
	Intensive animal production	5.2.0		d	159	Dog kennel, dog run for greyhounds
				d3.	224	Abandoned poultry shed
		5.2.1	Dairy	d3a	26d	Intensive animal production -dairy shed
		5.2.4	Poultry	d3b	26c	Intensive animal production - poultry
	Manufacturing and industrial	5.2.5 5.3.0	Pigs	d3a h7.	26p 147	Intensive animal production - piggery Abandoned urban or industrial area and site is locked up
	Manufacturing and industrial	5.5.0			147	e.g. Glen Alice
				h7a	165	Sawmill
				a1.	234	Storage site for agricultural chemicals and products (eg
						fertiliser dumps, cotton bunkers and temporary grain
						storages)
					235	Agricultural industry in a rural location eg cotton gin (See
						also class 53.)
				b1h	53	Building associated with horticultural industry (winery,
				1.7.		packing shed)
	Residential	5.4.0		h7a h	60 160	Abattoir Area recently under development for urban, commercial
	Residential	5.4.0		n	160	and/or industrial uses - infrastructure in place but no
						building activity
				h7d	94	Caravan park or mobile home village
		5.4.1	Urban residential	h7b	17	Residential
					17TM	- with a woody vegetation cover of open forest
					17TS	Residential - with a woody vegetation cover of woodland
				h7.	208	Aboriginal settlement
			Dural and the state	h7b	223	Internal housing allotments within golf course complexes
		5.4.2	Rural residential	h7e	115	Rural residential within vineyard
				h7c	171	Alternate life style community under multiple occupancy
				h7e	18 18R	Rural residential Rural residential - with more than 30% of ground area
					TOR	having regeneration of native tree species
					18TI	Rural residential - with a woody vegetation cover of
						isolated trees
		5.4.3	Rural living	1	18TM	Rural residential - with a woody vegetation cover of open
			-			forest
					18TS	Rural residential - with a woody vegetation cover of
				L		woodland
	Services	5.5.0		i8d	149	Resort style private land use
				h7a	16	Industrial/commercial
		E E 0	Public services	j9g h7.	50 77	Cemetery
		5.5.2	F UDIIC SERVICES	n/.	92	University or other tertiary institution
					92	Government and private facilities - gaol, training centre, school, religious institutions & training centres, religious
						retreats
		5.5.3	Recreation and culture	i8c	155	Surf club and/or coastal car parking facilities
		0.0.0		100	31	Urban recreation
					311	Urban recreation - irrigated
		1		1	31TS	Urban recreation - with a woody vegetation cover of
					3113	
					5115	Tourist development

Hydro	ALUM version 6 major	ALUM V6	ALUM V6 detailed	SCALD	LUMAP	
group	category	code	description	code	code	Detailed land-use class: version 23
				nsg	94A	Caravan park or mobile home village within a State Forest
		5.5.5	Research facilities	h7.	61	Research facility
	Utilities	5.6.0		f5.	190	Pump site, urban or irrigation supply
		5.6.1	Electricity	j.,	112	Electricity generation (power station and associated
			generation/transmission	,		stockpiles, hvdro-electric plants
				c2b90	127	Green power site (eg wind turbines)
				j	153	Disused power station
				j9.	93	Electricity substation
		5.6.2	Gas treatment, storage and transmission	j	163	Gas supply facility
	Transport and	5.7.0		j9b	192	Roadside rest area
	communication	5.7.1	Airports/aerodromes	j9n	156	Glider field for recreational activities
				i9j	36	Aerodrome/airport
		5.7.2	Roads	j9c	19	Road or road reserve
		5.7.3	Railways	j9d	20	Railway
					20V	Railway - track no longer used
		5.7.5	Navigation and	j9h	103	Communications facility
			communication		72	Trig station or beacon
	Mining	5.8.0		е	114	Conveyor Belt
		5.8.1	Mines	e4d	212	Mining infrastructure - buildings, sheds, conveyor belts, tanks and general plant associated with mining operations
	Waste treatment and disposal	5.9.5	Sewage	f5.	195	Pump out site for house boat effluent
	Reservoir or dam	6.2.3	Evaporation basin	j9.	194	Salt interception pump site
	Estuary/coastal waters	6.6.3	Estuary/coastal waters - intensive use	d3e	98	Oyster spoil & sheds, but not submerged leases
Wetland	Grazing natural vegetation	2.1.0		c2a	241	Swampy landscape in western drainage system
	Production forestry	2.2.0		nsg	54A	Mangrove within a State Forest
		_		- 5	55A	Mudflat within a State Forest
	Reservoir or dam	6.2.0		f5.	122	Constructed wetland for conservation or water
	River	6.3.0		c2a	138	Prior stream
					138TM	Prior stream - with a woody vegetation cover of open fores
					138TS	Prior stream - with a woody vegetation cover of woodland
				f5m	65	River gravel deposit
	Marsh/wetland	6.5.0		k0a	21	Floodplain swamp - back swamp
				k0b	22	Floodplain swamp - billabong
				f5l	23	Swamp
					23R	Swamp - with more than 30% of ground area having
						regeneration of native tree species
					23TD	Swamp - with a woody vegetation cover of closed forest
					23TM	Swamp - with a woody vegetation cover of open forest
					23TS	Swamp - with a woody vegetation cover of woodland
				k0o	56	Coastal marsh/estuarine swamp
		1		k0j	73	Dunal swamp
		1		k0b	74	Floodplain swamp
					74TM	Floodplain swamp - with a woody vegetation cover of open forest
					74TS	Floodplain swamp - with a woody vegetation cover of woodland
	Estuary/coastal waters	6.6.0		q6q	54	Mangrove
				f50	55	Mudflat

Pollutant land-use class	Hydrological land-use class
Forest	Conservation
	Scrub
Cleared land	Cleared
Urban	Urban
Crops	Cropping
Grazing	Grazing
Irrigated pasture	Irrig5
	Irrig10
Dry forb	Dryforb
	Treehort
Irrigated forb	Irrigforb5
	Irrigforb10
	Irrigtree5
	Irrigtree 10
Other	River
	Sand
	Wetland
Not used	Irrforb15
	Irrig6
	Irrig15
	Irrig20

Land-use classes for pollutant export models

Current catchment land-uses

					Land-use	(ha)								
	_				Disturbed								Total area	
	Undisturbed					Irrigated		Irrigated		Total	%	Total area	(ha) from	
Estuary	forest	Cleared	Urban	Crops	Grazing	pasture	Dry forb	forb	Other			(ha): A		Ratio A/B Reason for difference
Tweed River	45678	206	12287	7179	36141	715	1846	195	1806	58569	55.2	106053	107748	0.98
Cudgen Creek	2052	58	879	227	2641	3	436	494	121	4738	68.6	6911	7076	0.98
Cudgera Creek	2473	26	721	604	1860	0	332	9	70	3552	58.3	6095	6103	1.00
Mooball Creek	3433	9	1181	1294	3831	44	717	18	453	7094	64.6	10980	10968	1.00
Brunswick River	6562	24	4770	676	9906	22	709	10	192	16117	70.5	22871	22993	0.99
Belongil Creek	1212	8	661	0	1082	0	0	0	97	1751	57.2	3060	3068	1.00
Tallow Creek	152	5	306	0	52	0	0	0	18	363	68.1	533	546	0.98
Broken Head Creek	0	0	1	0	0	0	0	0	0	1	100.0	1	117	0.01 Incorrect land-use extraction
Richmond River	286174	631	35457	26829	302121	4244	16870	1730	14910	387882	56.3	688966	690022	1.00
Salty Lagoon	367	0	0	0	0	0	0	0	0	0	0.0	367	373	0.98
Evans River	5773	23	556	97	926	0	0	0	295	1602	20.9	7670	7850	0.98
Jerusalem Creek	4463	0	0	0	114	0	0	0	262	114	2.4	4839	4864	0.99
Clarence River	1305310	1748	21821	20342	814999	538	1848	1326	42668	862622	39.0	2210600	2218742	1.00
Lake Arragan	945	0	0	0	0	0	0	0	0	0	0.0	945	1025	0.92 Estuary excluded from map
Cakora Lagoon	1004	0	17	0	11	0	0	0	31	28	2.6	1063	1269	0.84 Incorrect land-use extraction
Sandon River	13053	0	7	0	94	0	0	0	43	101	0.8	13197	13414	0.98
Wooli Wooli River	17580	0	121	0	106	0	3	0	365	230	1.3	18175	18374	0.99
Station Creek	2093	0	0	0	5	0	0	0	0	5	0.2	2098	2162	0.97
Corindi River	11493	36	184	0	2449	0	122	27	276	2818	19.3	14587	14834	0.98
Pipe Clay Creek	25	0	76	0	4	0	0	0	8	80	70.8	113	164	0.69 Incorrect land-use extraction
Arrawarra Creek	1407	0	149	0	80	0	35	0	98	264	14.9	1769	1795	0.99
Darkum Creek	149	0	108	0	222	0	134	Ő	1	464	75.6	614	617	1.00
Woolgoolga Lake	1232	0	392	0	222	0	231	3	14	848	40.5	2094	2118	0.99
Flat Top Point Creek	10	0	78	0	21	0	65	5	58	169	71.3	237	259	0.91 Estuary excluded from map
Hearns Lake	160	7	49	0	122	0	259	0	61	437	66.4	658	675	0.98
Moonee Creek	2445	0	670	0	752	0	175	0 0	40	1597	39.1	4082	4152	0.98
Pine Brush Creek	227	0	92	0	87	0	324	0	3	503	68.6	733	735	1.00
Coffs Creek	381	10	1136	Ő	255	Ő	583	0	45	1984	82.3	2410	2450	0.98
Boambee Creek	1531	39	1451	Ő	891	Ő	642	0	305	3023	62.2	4859	4948	0.98
Bonville Creek	6839	7	1115	0	3004	0	234	0	167	4360	38.4	11366	11513	0.99
Bundageree Creek	783	0	166	0	42	0	204	0	7	208	20.8	998	1013	0.99
Bellinger River	93393	7	1425	35	13572	4	160	3	1498	15206	13.8	110097	110849	0.99
Dalhousie Creek	454	0	57	0	46	-	14	40	1430	15200	25.3	621	633	0.98
Ovster Creek	1175	0	101	0	380	0	24	40	20	505	25.3	1700	1692	1.00
Deep Creek	5246	2	221	0	2941	0	415	5	313	3584	39.2	9143	9153	1.00
Nambucca River	83073	41	1810	4	41617	109	517	30	3917	44128	33.7	131118	131157	1.00
Macleay River	475612	501	23471	4 3658	604676	24	517	500	22143	633345	56.0	1131100	1131867	1.00
South West Rocks Creek	475612	501 4	23471	3058	604676 6	24 0	515	500 0	22143	633345 126	56.0 27.3	462	461	1.00
	560	4 8	377	0	69	0	21	0	101	475	41.8	462 1136	461 1140	1.00
Saltwater Creek (Frederickton)		-		-	69 7	0		0						
Korogoro Creek	851 457	4 0	79 95	0 0	7 157	0	0	0	44	90	9.1	985 820	979	1.01
Killick Creek							0	-	111	252	30.7		822	1.00
Goolawah Lagoon	134	0	16	0	13	0	0	0	241	29	7.2	404	408	0.99
Hastings River	248146	226	9035	347	100250	34	1444	113	8824	111449	30.3	368419	368853	1.00
Cathie Creek	8390	0	1895	0	1560	0	8	0	51	3463	29.1	11904	11925	1.00
Duchess Gully	414	0	291	0	263	0	14	0	70	568	54.0	1052	1062	0.99

					Land-use	(ha)								
					Disturbed								Total area	
	Undisturbed					Irrigated		Irrigated		Total	%	Total area	(ha) from	
Estuary	forest	Cleared	Urban	Crops	Grazing	pasture	Dry forb	forb	Other		disturbed	(ha): A	Table 1: B	Ratio A/B Reason for difference
Camden Haven River	42716	57	2526	216	13398	0	116	1	2993	16314	26.3	62023	62115	1.00
Manning River	458277	644	12018	2330	327327	0	50	0	13898	342369	42.0	814544	815922	1.00
Khappinghat Creek	6381	3	1267	0	1301	0	3	0	109	2574	28.4	9064	9192	0.99
Black Head Lagoon	7	0	56	0	23	0	0	0	0	79	91.9	86	200	0.43 Incorrect land-use extractio
Wallis Lake	57790	208	7836	174	50031	0	25	0	13247	58274	45.1	129311	129561	1.00
Smiths Lake	1948	6	737	0	94	0	0	0	1008	837	22.1	3793	3798	1.00
Ayall River	71760	9	3367	7	14056	0	0	0	4033	17439	18.7	93232	93393	1.00
Karuah River	92195	44	2470	30	47912	0	0	0	3674	50456	34.5	146325	146630	1.00
Filligerry Creek	6295	213	1659	0	2114	0	125	0	3096	4111	30.4	13502	13522	1.00
Port Stephens	20551	105	4450	0	3845	0	0	0	14063	8400	19.5	43014	43114	1.00
Hunter River	790376	21825	55968	39970	1176048	3151	616	7924	36078	1305502	61.2	2131956	2141399	1.00
Glenrock Lagoon	0	0	0	0	0	0	0	0	0	0	0.0	0	742	0.00 Incorrect land-use extraction
_ake Macquarie	34914	1728	11967	0	10493	22	134	0	1478	24344	40.1	60736	71848	0.85 Estuary excluded from map
Aiddle Camp Creek	423	0	48	0	22	0	0	0	7	70	14.0	500	503	1.00
Noonee Beach Creek	284	59	6	0	0	0	0	0	1	65	18.6	350	348	1.00
Fuggerah Lake	46372	312	9791	0	12540	119	800	0	1353	23562	33.1	71287	79523	0.90 Estuary excluded from map
Wamberal Lagoon	141	0	424	0	11	0	0	0	6	435	74.7	582	634	0.92 Estuary excluded from map
Ferrigal Lagoon	67	0	695	0	103	0	2	0	17	800	90.5	884	922	0.96 Estuary excluded from map
Avoca Lake	407	7	382	0	239	0	8	0	37	636	58.9	1080	1144	0.94 Estuary excluded from map
Cockrone Lake	406	0	187	0	77	0	0	0	14	264	38.6	684	718	0.95 Estuary excluded from map
Brisbane Water	6920	92	7100	0	760	0	32	0	413	7984	52.1	15317	18089	0.85 Estuary excluded from map
lawkesbury River	1542787	9697	42847	1209	533656	6622	158	1997	24691	596186	27.6	2163664	2173856	1.00
Pittwater	3442	79	587	0	0	0	0	0	0	666	16.2	4108	6916	0.59 Incomplete land-use map
Broken Bay	823	65	308	0	0	0	0	0	0	373	31.2	1196	1293	0.92 Incomplete land-use map
Narrabeen Lagoon	3886	73	1446	0	0	0	0	0	0	1519	28.1	5405	5473	0.99
Dee Why Lagoon	28	20	884	0	0	0	0	0	0	904	97.0	932	457	2.04 Incorrect land-use extraction
Curl Curl Lagoon	0	0	202	0	0	0	0	0	0	202	100.0	202	472	0.43 Incorrect land-use extraction
Manly Lagoon	319	39	892	0	0	0	0	0	0	931	74.5	1250	1734	0.72 Incorrect land-use extraction
Middle Harbour Creek	2167	0	5376	0	121	0	0	0	363	5497	68.5	8027	8309	0.97
ane Cove River	2225	0	7076	0	265	0	0	0	240	7341	74.9	9806	9833	1.00
Parramatta River	2601	153	22706	0	0	0	0	0	1098	22859	86.1	26558	26610	1.00
Port Jackson	614	212	4165	0	0	0	0	0	364	4377	81.7	5355	5574	0.96 Incomplete land-use map
Cooks River	662	311	9786	0	67	0	0	0	0	10164	93.9	10826	11177	0.97
Georges River	36950	20133	30276	0	5367	7	13	112	1893	55908	59.0	94751	95750	0.99
Botany Bay	1926	433	2634	0	9	0	0	0	0	3076	61.5	5002	5793	0.86 Incomplete land-use map
Port Hacking	13105	209	2442	0	169	2	0	4	4	2826	17.7	15935	16577	0.96 Incomplete land-use map
Vattamolla Creek	577	0	0	0	0	0	0	0	0	0	0.0	577	808	0.71 Incomplete land-use map
Hargraves Creek	120	1	74	0	0	0	0	0	1	75	38.3	196	202	0.97
Stanwell Creek	650	11	60	0	29	0	0	0	13	100	13.1	763	769	0.99
Flanagans Creek	123	5	70	0 0	0	0 0	0 0	0	.0	75	37.7	199	202	0.98
Voodlands Creek	99	3	65	0 0	33	0 0	Ő	0	0	101	50.5	200	201	1.00
Blacky Creek	147	3	138	0	20	0	0	0	3	161	51.8	311	308	1.01
Bellambi Gully	80	62	408	0	93	0	0	0	2	563	87.3	645	647	1.00
Bellambi Lake	0	02	124	0	0	0	0	0	9	124	93.2	133	134	1.00
Fowradgi Creek	277	15	550	0	12	0	0	0	3	577	67.3	857	860	1.00
Fairy Creek	515	20	1483	0	58	0	0	0	3	1561	75.1	2079	2076	1.00
Allans Creek	1274	20 96	2980	0	767	0	0	0	29	3843	74.7	5146	5163	1.00
Port Kembla	28	90 27	2960 543	0	84	0	0	0	29	3643 654	95.6	684	625	1.00 1.09 Incorrect land-use extraction
-ake Illawarra	20 7240	402	5966	0	9707	144	3	12	∠ 3884	16234	95.8 59.3	27358	625 27427	1.00 1.00
ane IIIdwalia	7240	40Z	0066	U	9/0/	144	3	12	3884 29	16234 888	59.3 88.7	27358	1005	1.00

	. <u> </u>				Land-use	(ha)								
	Undisturbed				Disturbed	Irrigated		Irrigated		Total	0/	Total area	Total area (ha) from	
Estuary	forest	Cleared	Urban	Crops	Grazing	pasture	Dry forb	forb	Other	disturbed		(ha): A	• •	Ratio A/B Reason for difference
Minnamurra River	3812	143	881	0	6732	32	8	14	273	7810	65.7	11895	11919	1.00
Spring Creek	16	6	96	0	458	0	0	0	7	560	96.1	583	588	0.99
Munna Munnora Creek	47	0	70	0	244	0	0	0	3	314	86.3	364	363	1.00
Werri Lagoon	371	0	97	0	1168	0	5	0	19	1270	76.5	1660		1.00
Crooked River	382	22	252	0	2461	0	0	29	71	2764	85.9	3217	3227	1.00
Shoalhaven River	436317	990	30495	355	227379	308	408	259	12755	260194	36.7	709266		1.00
Wollumboola Lake	3069	3	129	0	165	0	0	0	675	297	7.3	4041	4046	1.00
Currarong Creek	1173	0	47	0	3	0	0	0	12	50	4.0	1235	1237	1.00
Cararma Creek	828	1	8	0	17	0	0	0	54	26	2.9	908		0.99
Wowly Gully	436	0	97	0	3	0	0	0	83	100	16.2	619	619	1.00
Callala Creek	1499	0	279	0	0	0	0	0	196	279	14.1	1974	1979	1.00
Currambene Creek	10182	51	1955	0	3341	6	2	15	644	5370	33.2	16196	16224	1.00
Moona Moona Creek	2023	1	492	0	221	0	0	0	129	714	24.9	2866	2871	1.00
Flat Rock Creek	689	0	1	0	0	0	0	0	0	1	0.1	690		1.00
Captains Beach Lagoon	315	0	0	0	0	0	0	0	0	0	0.0	315	319	0.99
Telegraph Creek	431	0	0	0	0	0	0	0	0	0	0.0	431	429	1.01
Jervis Bay	2847	20	259	0	2	0	0	0	92	281	8.7	3220	3248	0.99
St Georges Basin	25935	37	2958	0	2230	0	0	15	4419	5240	14.7	35594	35666	1.00
Swan Lake	2209	9	365	0	15	0	0	0	497	389	12.6	3095	3106	1.00
Berrara Creek	3434	3	32	0	25	0	0	0	32	60	1.7	3526	3530	1.00
Nerrindillah Creek	1612	0	8	0	103	0	0	0	7	111	6.4	1730	1729	1.00
Conjola Lake	12371	3	283	0	1107	0	2	2	787	1397	9.6	14555	14581	1.00
Narrawallee Inlet	4495	3	134	10	3364	0	3	7	171	3521	43.0	8187	8196	1.00
Mollymook Creek	66	0	156	0	45	0	0	0	5	201	73.9	272		1.00
Millards Creek	70	0	324	0	56	0	0	0	2	380	84.1	452	451	1.00
Ulladulla	0	0	26	0	0	0	0	0	1	26	96.3	27	30	0.91 Incorrect land-use extraction
Burrill Lake	2776	20	503	2	2670	0	0	1	531	3196	49.1	6503	6512	1.00
Tabourie Lake	3827	3	109	0	621	0	0	0	193	733	15.4	4753	4763	1.00
Termeil Lake	953	3	14	0	432	0	0	0	55	449	30.8	1457	1462	1.00
Meroo Lake	1437	0	50	0	443	0	6	2	117	501	24.4	2055	2064	1.00
Willinga Lake	1005	0	35	0	266	0	0	0	83	301	21.7	1389	1390	1.00
Butlers Creek	112	0	190	0	0	0	0	0	6	190	61.7	308	309	1.00
Durras Lake	5437	2	379	0	5	0	0	0	379	386	6.2	6202	6215	1.00
Durras Creek	510	0	22	0	40	0	0	0	22	62	10.4	594	594	1.00
Maloneys Creek	747	2	69	0	0	0	0	0	3	71	8.6	821	820	1.00
Cullendulla Creek	893	0	604	0	37	0	0	0	104	641	39.1	1638	1645	1.00
Clyde River	164586	6	1004	0	5911	0	0	2	2244	6923	4.0	173753	174046	1.00
Batemans Bay	1580	17	1062	0	24	0	0	0	90	1103	39.8	2773	2801	0.99
Saltwater Creek (Rosedale)	89	0	58	0	137	0	2	0	0	197	68.9	286	282	1.01
Tomaga River	7455	22	1175	0	419	0	7	0	282	1623	17.3	9360	9371	1.00
Candlagan Creek	1838	25	178	0	216	0	0	0	173	419	17.2	2430	2431	1.00
Bengello Creek	335	0	11	0	6	0	0	0	1	17	4.8	353	1633	0.22 Land-use map clipped
Moruya River	122508	61	2848	2	15314	0	0	146	1908	18371	12.9	142787	142982	1.00
Congo Creek	1052	7	466	0	2629	0	0	0	169	3102	71.8	4323	4332	1.00
Meringo Creek	280	0	102	0	152	0	0	0	2	254	47.4	536	538	1.00
Kellys Lake	34	0	94	0	84	0	0	0	1	178	83.6	213	218	0.98
Coila Lake	3448	0	325	0	917	0	0	0	775	1242	22.7	5465	5476	1.00
Tuross River	155947	155	1664	20	21840	84	48	18	2983	23829	13.0	182759	182928	1.00
Lake Brunderee	552	0	8	0	21	0	0	0	12	29	4.9	593	593	1.00
Lake Tarourga	584	0	2	0	3	0	0	0	39	5	0.8	628	631	0.99

					Land-use	(ha)								
	–				Disturbed								Total area	
- /	Undisturbed	<u>.</u>		•	. .	Irrigated	.	Irrigated		Total		Total area	()	
Estuary	forest	Cleared	Urban	Crops	Grazing	pasture	Dry forb	forb	Other	disturbed	disturbed			Ratio A/B Reason for difference
Lake Brou	4018	1	15	0	319	0	0	0	53 0	335	7.6	4406	4409	1.00
Lake Mummuga	2604	0	129	0	7	0	•	0	Ũ	136	5.0	2740	2741	1.00
Kianga Lake	566	4	128	0	49	0	0	0	24	181	23.5	771	767	1.01
Wagonga Inlet	8336	0	583	0	366	0	0	0	733	949	9.5	10018	10022	1.00
Little Lake (Narooma)	50	0	93	0	11	0	0	0	0	104	67.5	154	227	0.68 Incorrect land-use extraction
Bullengella Lake	15	0	0	0	38	0	0	0	18	38	53.5	71	74	0.96 Incorrect land-use extraction
Nangudga Lake	166	0	398	0	354	0	0	0	100	752	73.9	1018	1021	1.00
Corunna Lake	1538	1	733	0	707	0	2	6	207	1449	45.4	3194	3187	1.00
Tilba Tilba Lake	326	1	98	0	1224	0	0	1	178	1324	72.4	1828	1827	1.00
Little Lake (Wallaga)	24	0	5	0	156	0	0	0	18	161	79.3	203	251	0.81 Incorrect land-use extraction
Wallaga Lake	15787	6	824	0	9322	6	8	48	1296	10214	37.4	27297	27314	1.00
Bermagui River	5710	19	540	0	2014	0	1	0	283	2574	30.0	8567	8562	
Baragoot Lake	1009	0	124	0	114	0	0	0	65	238	18.1	1312	1316	1.00
Cuttagee Lake	5034	0	156	0	102	0	1	0	152	259	4.8	5445	5447	1.00
Murrah River	12685	6	986	0	5635	0	7	0	336	6634	33.8	19655	19660	1.00
Bunga Lagoon	1003	0	11	0	126	0	0	9	17	146	12.5	1166	1168	1.00
Wapengo Lagoon	5684	1	17	0	1149	0	0	0	362	1167	16.2	7213	7218	1.00
Middle Lagoon	1829	0	25	0	868	0	3	0	71	896	32.0	2796	2788	1.00
Nelson Lagoon	2639	0	17	0	42	0	0	0	131	59	2.1	2829	2833	1.00
Bega River	109276	22	3245	13	78058	27	15	16	3337	81396	42.0	194009	193867	1.00
Wallagoot Lake	2190	0	49	0	390	0	0	0	425	439	14.4	3054	3050	1.00
Bournda Lagoon	3133	2	80	0	217	0	0	0	22	299	8.7	3454	3458	1.00
Back Lagoon	2675	10	241	0	179	0	0	2	76	432	13.6	3183	3174	1.00
Merimbula Lake	1862	0	747	0	1091	0	0	2	599	1840	42.8	4301	4348	0.99
Pambula River	24328	31	830	0	4446	0	6	2	504	5315	17.6	30147	30118	1.00
Curalo Lagoon	2337	9	313	0	136	0	0	0	112	458	15.8	2907	2903	1.00
Shadrachs Creek	1270	0	7	0	47	0	0	0	2	54	4.1	1326	1324	1.00
Nullica River	5212	5	7	0	248	0	0	0	47	260	4.7	5519	5511	1.00
Boydtown Creek	273	0	12	0	95	0	0	0	10	107	27.4	390	387	1.01
Towamba River	87820	2	555	0	13506	0	1	21	1084	14085	13.7	102989	102821	1.00
Fisheries Creek	630	0	1	0	16	0	0	0	7	17	2.6	654	654	1.00
Twofold Bay	507	7	122	0	77	Ő	Ő	0	35	206	27.5	748	1101	0.68 Incorrect land-use extraction
Saltwater Creek (Eden)	1721	0	0	0	0	Ő	Ő	0	0	0	0.0	1721	1724	1.00
Woodburn Creek	1355	0	0 0	0	0 0	Ő	Ő	0 0	0	0	0.0	1355	1356	1.00
Wonboyn River	33198	0	140	0	335	0	0	0	374	475	1.4	34047	33964	1.00
Merrica River	6087	0	0	0	0	0	0	0	0,4	4/5 0	0.0	6087	6066	1.00
Table Creek	1740	0	0	0	0	0	0	0	0	0	0.0	1740	1735	1.00
Nadgee River	5914	0	0	0	0	0	0	0	0	0	0.0	5914	5907	1.00
Nadgee Lake	1492	0	0	0	0	0	0	0	0	0	0.0		1490	1.00
Total	7258769	62753	452835	105630	4581400	16267	31317	15175	269812	5265377	0.0	12793958		0.99

Estuary draining to a port, bay or harbour

Appendix 8 *Catchment hydrology (1975-2007)*

Catchment nyc	aroiog	<u> </u>	910 Annual	-2007) Bro-olog	ring catchm	ont condit	ion	Curr	ent land-use	condition		% inc	rease in	flow
	Area from		evapo-	Annual	Annual	Total		Annual	Annual	Total		Surf-		
Estuary	DEM clip (ha)	rainfall (mm)	ration (mm)	surface flow (MI)	base flow (MI)	annual flow (MI)	Runoff coeff't	surface flow (MI)	base flow (MI)	annual flow (MI)	Runoff coeff't		Base flow	Total flow
Tweed River	105777	1403	1538	268058	111800	379858	0.26	307266	184464	491730	0.33	14.6	65.0	29.5
Cudgen Creek	6879	1476	1649	19323	5727	25050	0.25	23119	11381	34500	0.34	19.6	98.7	37.7
Cudgera Creek Mooball Creek	6076 10930	1473 1464	1631 1629	16053 29418	6048 10782	22102 40200	0.25 0.25	18444 34468	10730 17763	29174 52231	0.33 0.33	14.9 17.2	77.4 64.8	32.0 29.9
Brunswick River	22801	1466	1586	122525	21304	143829	0.43	141069	48934	190003	0.57	15.1	129.7	32.1
Belongil Creek Tallow Creek	3055 539	1494 1500	1650 1630	10611 1437	4037 564	14648 2001	0.32 0.25	12069 2022	6235 1325	18304 3347	0.40 0.41	13.7 40.7	54.4 135.1	25.0 67.3
Broken Head Creek	74	1500	1611	305	142	447	0.23	325	177	502	0.41	6.4	24.9	12.3
Richmond River	685490	1113	1606	1276151	241096	1517247	0.20	1479477	618504	2097981	0.28		156.5	38.3
Salty Lagoon Evans River	367 7653	1339 1260	1672 1640	481 10475	591 7033	1071 17508	0.22 0.18	481 12015	591 8006	1071 20021	0.22 0.21	0.0 14.7	0.0 13.8	0.0 14.4
Jerusalem Creek	4870	1200	1636	5268	3568	8836	0.15	5310	3452	8762	0.15	0.8	-3.3	-0.8
Clarence River	2212365	963	1412	1936833	778370	2715202	0.13	2138886	1190766	3329652	0.16		53.0	22.6
Lake Arragan Cakora Lagoon	947 1263	1159 1151	1583 1561	740 1508	537 552	1277 2060	0.12 0.14	741 1525	537 549	1278 2074	0.12 0.14	0.2 1.2	0.0 -0.6	0.1 0.7
Sandon River	13192	1133	1583	14883	4207	19090	0.13	15136	4214	19351	0.13	1.7	0.2	1.4
Wooli Wooli River Station Creek	18135 2110	1124 1165	1569 1577	23336 2860	4527 689	27863 3549	0.14 0.14	23631 2907	4643 690	28274 3597	0.14 0.15	1.3 1.7	2.6 0.1	1.5 1.4
Corindi River	14580	1189	1553	25570	5106	30676	0.14	26589	5800	32389	0.15	4.0	13.6	5.6
Pipe Clay Creek	164	1193	1625	176	47	223	0.11	250	190	439	0.22		304.7	97.0
Arrawarra Creek Darkum Creek	1773 613	1200 1211	1605 1580	2523 1054	763 397	3287 1452	0.15 0.20	2684 1284	869 896	3552 2180	0.17 0.29	6.4 21.8	13.8 125.5	8.1 50.2
Woolgoolga Lake	2103	1233	1544	3886	1077	4963	0.20	4482	2032	6514	0.25	15.3	88.7	31.2
Flat Top Point Creek	255	1232	1548	421	165	586	0.19	500	372	872	0.28	18.8	125.0	48.8
Hearns Lake Moonee Creek	675 4077	1243 1289	1553 1530	1114 6480	383 3112	1496 9593	0.18 0.18	1226 7361	566 5361	1792 12722	0.21 0.24	10.1 13.6	48.0 72.3	19.8 32.6
Pine Brush Creek	735	1353	1472	1415	490	1905	0.18	1637	861	2498	0.24		75.5	31.1
Coffs Creek	2402	1391	1530	5269	2142	7411	0.22	6901	4858	11760	0.35	31.0	126.8	58.7
Boambee Creek Bonville Creek	4872 11365	1425 1421	1533 1507	11149 39162	4137 27043	15286 66205	0.22 0.41	13461 42320	7034 31710	20494 74030	0.30 0.46	20.7 8.1	70.0 17.3	34.1 11.8
Bundageree Creek	1004	1384	1606	1836	559	2395	0.17	2048	925	2973	0.40	11.5	65.4	24.1
Bellinger River	110104	1335	1394	438111	299414	737525	0.50	446835	314955	761791	0.52	2.0	5.2	3.3
Dalhousie Creek Oyster Creek	622 1676	1363 1363	1576 1551	1000 2958	223 1108	1223 4066	0.14 0.18	1102 3179	346 1485	1448 4665	0.17 0.20	10.2 7.5	55.6 34.0	18.4 14.7
Deep Creek	8986	1342	1555	18202	5054	23255	0.19	19490	7915	27405	0.23	7.1	56.6	17.8
Nambucca River	130266	1215	1482	271138	108195	379333	0.24	286007	148697	434704	0.27	5.5	37.4	14.6
Macleay River South West Rocks Creek	1129897 455	903 1191	1297 1604	924229 487	551731 196	1475960 683	0.14 0.13	998044 575	723854 292	1721899 867	0.17 0.16	8.0 18.1	31.2 49.1	16.7 27.0
Saltwater Creek (Frederickton)	1130	1198	1582	1498	677	2175	0.16	1788	1079	2867	0.21	19.4	59.3	31.8
Korogoro Creek	958	1116	1557	1217	140	1358	0.13	1337	188	1525	0.14	9.9	34.0	12.4
Killick Creek Goolawah Lagoon	796 396	1140 1156	1486 1515	961 516	112 305	1074 821	0.12 0.18	1067 581	138 290	1205 872	0.13 0.19		22.5 -4.8	12.2 6.2
Hastings River	366637	1155	1381	760166	464998	1225164	0.29	817062	554614	1371676	0.32	7.5	19.3	12.0
Cathie Creek	11922	1209	1468	18025	3829	21854	0.15	21245	7531	28776	0.20		96.7	31.7
Duchess Gully Camden Haven River	1059 59127	1214 1230	1428 1436	1443 128603	231 43674	1674 172277	0.13 0.24	1887 140404	545 57609	2432 198013	0.19 0.27	30.8 9.2	136.0 31.9	45.3 14.9
Manning River	817177	1078	1355	1045553	961872	2007425	0.23	1117487	1096467	2213954	0.25	6.9	14.0	10.3
Khappinghat Creek	9178 196	1157 1151	1460 1462	15073 563	6753 67	21826 630	0.21 0.28	16862 409	8741 284	25604 693	0.24 0.31	11.9 -27.4	29.5 324.9	17.3 10.0
Black Head Lagoon Wallis Lake	121852	1139	1462	182897	90542	273439	0.28	198179	113346	311525	0.31		25.2	13.9
Smiths Lake	2618	1220	1441	3125	1994	5120	0.16	3661	2799	6461	0.20		40.4	26.2
Myall River Karuah River	82036 147978	1172 1127	1451 1450	96006 214025	38606 121650	134612 335674	0.14 0.20	100365 222005	44344 136869	144708 358874	0.15 0.22	4.5 3.7	14.9 12.5	7.5 6.9
Tilligerry Creek	13040	1165	1509	7236	819	8055	0.05	9114	2466	11580	0.08			43.8
Port Stephens	32307	1158	1499	28250	4921	33172	0.09	30443	8353	38796	0.10	7.8	69.7	17.0
Hunter River Glenrock Lagoon	2138152 738	770 1057	1486 1510	1136070 975	755307 243	1891377 1218	0.11 0.16	1250654 1121	1019018 641	2269672 1762	0.14 0.23	10.1 15.0	34.9 164.0	20.0 44.7
Lake Macquarie	60844	988	1516		11721	89868	0.15	89290	23899	113188	0.19		103.9	25.9
Middle Camp Creek	502	1078	1502		176	786	0.15	658	193	851	0.16	7.9	9.1	8.2
Moonee Beach Creek Tuggerah Lake	350 71468	1094 1032	1501 1467	388 84781	114 17248	502 102029	0.13 0.14	440 93122	225 31417	664 124539	0.17 0.17	13.2 9.8	96.9 82.2	32.2 22.1
Wamberal Lagoon	582	1124	1453	938	133	1070	0.16	1260	622	1882	0.29	34.4	369.0	75.8
Terrigal Lagoon	894	1120	1464	1154	290	1444	0.14	1741	1497	3238	0.32		416.0	124.3
Avoca Lake Cockrone Lake	1077 685	1130 1141	1500 1503		455 278	1936 1195	0.16 0.15	1902 1121	1297 641	3199 1762	0.26 0.23		185.1 130.6	65.3 47.4
Brisbane Water	15349	1082	1476	18563	5521	24083	0.14	24398	16496	40894	0.25	31.4	198.8	69.8
Hawkesbury River	2162800	764	1318		785390	2178666	0.13	1468289	951792	2420081	0.15	5.4	21.2	11.1
Pittwater Broken Bay	5402 1425	1073 1062	1467 1501	3804 869	1692 331	5496 1201	0.09 0.08	4170 1053	2197 586	6368 1639	0.11 0.11	9.6 21.1	29.9 76.9	15.9 36.5
Narrabeen Lagoon	5455	1108	1431	6181	3232	9413	0.16	7430	6061	13491	0.22		87.5	43.3
Dee Why Lagoon	929 368	1146 1151	1451 1453	1108 253	471 178	1579	0.15 0.10	1851 413	1974 543	3825	0.36 0.23		319.3 205.3	
Curl Curl Lagoon Manly Lagoon	1353	1164	1455		785	431 2441	0.10	2571	2653	956 5225	0.23		205.3	
Middle Harbour Creek	8219	1116	1467	7905	5164	13068	0.14	12013	14707	26720	0.29	52.0	184.8	104.5
Lane Cove River Parramatta River	1400 26549	988 887	1480 1510	9951 21109	3410 2907	13361 24016	0.97 0.10	15191 34288	13908 14991	29099 49278	2.10 0.21		307.9 415.6	
Port Jackson	6317	1125	1505	3088	1817	4904	0.10	5249	5497	10746	0.21		202.6	
Cooks River	11131	981	1498		2032	12455	0.11	18290	9471	27760	0.25			
Georges River Botany Bay	94610 5898	1047 848	1468 1505	68684 4027	17698 781	86382 4807	0.09 0.10	95285 6298	62450 2824	157735 9122	0.16 0.18		252.9 261.9	82.6 89.8
Port Hacking	16967	930	1435		10619	23950	0.10	14787	14514	29301	0.18		36.7	22.3
Wattamolla Creek	811	968	1440	508	813	1322	0.17	508	813	1322	0.17	0.0	0.0	0.0
Hargraves Creek	200 766	943 939	1375 1341		153	408	0.22 0.22	315 920	281 839	597 1750	0.32	23.3 5.8	84.1 22.3	46.1
Stanwell Creek Flanagans Creek	200	939 946	1341	869 718	686 361	1556 1079	0.22	920 757	461	1759 1218	0.24 0.64		22.3 27.8	13.1 12.9
Woodlands Creek	202	937	1341	588	310	898	0.47	639	416	1055	0.56	8.7	34.0	17.4
Slacky Creek Bellambi Gully	303 642	937 942	1341 1354	1096 2305	483 910	1579 3215	0.56 0.53	1184 2587	679 1808	1864 4395	0.66 0.73		40.7 98.7	18.0 36.7
Bellambi Lake	131	942 958	1354	2305	910	670	0.53	2587 651	325	4395 976	0.73		98.7 356.4	36.7 45.6
Towradgi Creek	859	946	1361	3943	570	4513	0.56	4159	1206	5365	0.66	5.5	111.7	18.9
Fairy Creek Allans Creek	2072 5080	955 969	1374 1394	8499 16729	1114 4589	9613 21318	0.49 0.43	9297 18726	2753 8532	12050 27258	0.61 0.55	9.4 11.9	147.2 85.9	25.4 27.9
	5000	309	1004	10/29	-1009	21010	5.45	10720	0002	21200	0.00	. 1.3	00.0	21.0

	Area from	Annual	Annual evapo-	Pre-clea Annual	ring catchn Annual	nent condit Total	ion	Curre Annual	ent land-use Annual	conditions Total	6	% inc Surf-	rease ir	1 flow
	DEM clip	rainfall	ration	surface flow	base flow	annual		surface	base flow	annual	Runoff	ace		
Estuary Port Komble	(ha)	(mm) 1010	(mm) 1473	(MI)	(MI) 287	flow (MI) 1505	0.25	flow (MI) 1494	(MI) 696	flow (MI)	coeff't 0.36	flow 22.6	flow 142.4	flow 45.5
Port Kembla Lake Illawarra	596 23806	980	1394	1218 58836	287 14965	73801	0.25	67611	31032	2189 98643	0.36	22.6 14.9	142.4	45.5
Elliott Lake	1000	1022	1461	2353	114	2466	0.24	3418	615	4033	0.39	45.3	440.7	63.5
Vinnamurra River	11842	1029	1303	32637	9075	41712	0.34	37041	19921	56962	0.47	13.5	119.5	36.6
Spring Creek Munna Munnora Creek	583 364	1072 1089	1361 1347	1262 688	825 72	2088 760	0.33 0.19	1262 840	825 442	2088 1282	0.33 0.32	0.0 22.1	0.0 511.1	0.0 68.7
Werri Lagoon	1646	1106	1352	5216	1339	6556	0.36	6128	3313	9441	0.52	17.5	147.3	44.0
Crooked River	3187	1150	1444	7113	724	7837	0.21	9249	2604	11853	0.32	30.0	259.8	51.2
Shoalhaven River	709369	739	1216	871397	367352	1238749	0.24	924726	458451	1383177	0.26	6.1	24.8	11.7
Wollumboola Lake Currarong Creek	3417 1235	1067 1074	1455 1460	7759 2978	2249 740	10008 3719	0.27 0.28	8020 3163	2337 755	10358 3917	0.28 0.30	3.4 6.2	3.9 2.0	3.8 5.3
Cararma Creek	900	1069	1466	1157	1639	2796	0.20	1156	1560	2716	0.28	-0.1	-4.8	-2.8
Nowly Gully	611	1056	1460	1066	572	1637	0.25	1152	607	1759	0.27	8.1	6.2	7.5
Callala Creek	1991	1045	1459	2931	1239	4169	0.20	3287	1086	4373	0.21	12.1	-12.3	4.9
Currambene Creek Noona Moona Creek	16133 2864	997 1026	1414 1450	43160 6481	5419 632	48579 7112	0.30 0.24	47259 7308	9594 1696	56853 9004	0.35 0.31	9.5 12.8	77.0 168.4	17.0 26.6
Flat Rock Creek	684	1047	1426	1613	979	2592	0.36	1684	939	2623	0.37	4.4	-4.1	1.1
Captains Beach Lagoon	314	1051	1433	926	452	1378	0.42	975	428	1403	0.43	5.3	-5.3	1.8
Telegraph Creek	419	1054	1433	950	493	1444	0.33	999	470	1469	0.33	5.1	-4.8	1.
Jervis Bay St Georges Basin	3804 31662	1051 968	1452 1367	7087 82624	2878 15329	9964 97952	0.25 0.32	7682 88404	3241 20214	10923 108618	0.27 0.35	8.4 7.0	12.6 31.9	9.0 10.9
Swan Lake	2687	1006	1437	5662	644	6306	0.23	6097	1410	7506	0.28	7.7	119.0	19.0
Berrara Creek	3496	985	1411	8297	1032	9330	0.27	8336	1064	9400	0.27	0.5	3.1	0.0
Nerrindillah Creek	1720	1001	1432	4768	1539	6306	0.37	4880	1621	6501	0.38	2.4	5.4	3.
Conjola Lake Narrawallee Inlet	13990 8157	951 974	1295 1299	33890 18632	9940 2723	43830 21355	0.33 0.27	34721 20281	11052 6164	45773 26445	0.34 0.33	2.5 8.8	11.2 126.4	4.4 23.8
Narrawallee Inlet Mollymook Creek	272	1021	1299	1046	462	21355 1508	0.27	1265	706	26445	0.33	8.8 21.0	52.7	23.8
Villards Creek	451	1016	1415	1649	721	2370	0.52	2131	1376	3507	0.77	29.2	90.7	48.
Ulladulla	31	1018	1423	76	39	115	0.36	105	80	185	0.59	38.5		61.
Burrill Lake Tabourie Lake	6100 4620	983 974	1347 1353	15508 10948	2442 1586	17950 12533	0.30 0.28	17429 11581	6172 2134	23601 13715	0.39 0.30	12.4 5.8	152.7 34.6	31. 9.
Termeil Lake	1410	974	1339	3077	380	3458	0.25	3321	836	4157	0.30	7.9	119.7	20.
Veroo Lake	1974	974	1362	4335	570	4905	0.26	4653	1018	5670	0.29	7.3	78.6	15.0
Willinga Lake	1359	988	1385	2840	435	3275	0.24	3106	724	3830	0.29	9.4	66.4	16.9
Butlers Creek	306 5856	992 944	1367 1371	446 11587	214 1724	660 12211	0.22 0.24	725	833 2260	1557 14377	0.51 0.26	62.5 4.6	288.8 31.1	136.0 8.0
Durras Lake Durras Creek	5050	944	1371	883	1724	13311 1060	0.24	12117 900	2260	14377	0.20	4.6	17.3	4.
Valoneys Creek	815	918	1382	1094	271	1365	0.18	1194	332	1527	0.20	9.2	22.4	11.
Cullendulla Creek	1638	891	1376	3047	613	3660	0.25	3862	2188	6050	0.41	26.7		65.3
Clyde River	172502	851	1264	380367	116585	496953	0.34	385807	126007	511814	0.35	1.4	8.1	3.0
Batemans Bay Saltwater Creek (Rosedale)	3010 282	891 893	1368 1339	5212 555	979 95	6191 650	0.23 0.26	6576 679	2933 312	9510 991	0.35 0.39	26.2	199.5 227.8	53.0 52.0
Tomaga River	9261	836	1308	17830	3168	20998	0.20	19586	5006	24591	0.32	9.8	58.0	17.
Candlagan Creek	2423	834	1310	4394	950	5345	0.26	4705	1400	6106	0.30	7.1	47.4	14.3
Bengello Creek	1636	837	1331	2113	484	2596	0.19	2157	580	2737	0.20	2.1	20.0	5.4
Moruya River Congo Creek	142412 4322	717 821	1215 1329	279715 7755	80352 1397	360067 9152	0.35 0.26	291405 8642	98131 5505	389537 14146	0.38 0.40	4.2 11.4	22.1 294.1	8.2 54.6
Veringo Creek	530	833	1323	1223	74	1297	0.20	1295	279	1574	0.36	5.9	277.7	21.3
Kellys Lake	212	834	1341	355	465	820	0.46	355	465	820	0.46	0.0	0.0	0.0
Coila Lake	4799	806	1322	11532	945	12476	0.32	12032	1654	13687	0.35	4.3	75.2	9.7
Tuross River Lake Brunderee	181364 598	732 820	1177 1336	348451 1576	72142 115	420593 1691	0.32 0.34	359790 1617	88265 110	448055 1727	0.34 0.35	3.3 2.6	22.3 -4.6	6.9 2.1
Lake Tarourga	599	820	1332	1346	134	1479	0.34	1365	129	1493	0.30	1.4	-4.0	2.
_ake Brou	4108	808	1313	9544	977	10521	0.32	9642	1181	10823	0.33	1.0	20.9	2.9
Lake Mummuga	2579	818	1290	6277	404	6682	0.32	6432	455	6887	0.33	2.5	12.6	3.1
Kianga Lake	752 9337	826 817	1286 1272	1487 20818	140 1645	1627 22462	0.26 0.29	1671 21727	373 2004	2044 23731	0.33 0.31	12.4 4.4	166.1 21.9	25.6 5.6
Wagonga Inlet Little Lake (Narooma)	217	835	1318	421	1045	542	0.29	421	122	23731	0.31	4.4	21.9	0.0
Bullengella Lake	59	837	1326	86	0	86	0.17	104	5	109	0.22	20.7	0.0	26.
Nangudga Lake	951	830	1306	1666	62	1728	0.22	2340	624	2964	0.38		913.2	71.
Corunna Lake	2981	827	1257	5965	293	6258	0.25	7288	1498	8785	0.36	22.2	410.4	40.
Tilba Tilba Lake Little Lake (Wallaga)	1724 234	827 826	1252 1300	2100 169	278 63	2378 232	0.17 0.12	2436 194	1198 229	3634 423	0.25 0.22	16.0 14.7		52. 82.
Wallaga Lake	26401	795	1280	42982	4707	47688	0.23	46080	10622	56702	0.22			18.9
Bermagui River	8368	791	1276	13006	1096	14102	0.21	13957	2480	16437	0.25	7.3	126.2	16.
Baragoot Lake	1269 5324	800 781	1298	2071 8567	136 694	2207 9260	0.22 0.22	2168 8727	236 741	2403 9468	0.24 0.23	4.7	72.9 6.8	8.
Cuttagee Lake Murrah River	5324 19588	781 768	1280 1257	8567 30698	694 3896	9260 34594	0.22	8727 32739	741 8360	9468 41099	0.23	1.9 6.6	6.8 114.6	2. 18.
Bunga Lagoon	1157	779	1287	1917	147	2063	0.23	2009	173	2182	0.24	4.8	18.1	5.
Wapengo Lagoon	6928	773	1275	10508	864	11371	0.21	10825	1323	12148	0.23	3.0	53.1	6.
Viddle Lagoon	2738	766	1251	4002	270	4272	0.20	4217	645	4862	0.23	5.4		13.
Nelson Lagoon Bega River	2722 193535	756 711	1258 1153	3539 268256	248 59967	3787 328223	0.18 0.24	3542 283873	245 104236	3787 388109	0.18 0.28	0.1 5.8	-1.2 73.8	0. 18.
Wallagoot Lake	2659	731	1219	3182	203	3386	0.24	3257	256	3513	0.20	2.3	25.8	3.
Bournda Lagoon	3450	729	1215	4423	316	4738	0.19	4475	450	4925	0.20	1.2	42.4	3.
Back Lagoon	3139	718	1201	3970	299	4269	0.19	4195	529	4724	0.21	5.7	76.9	10.
Verimbula Lake Pambula River	3755 29772	729 749	1223 1183	4795 40150	264 5569	5059 45719	0.18 0.21	5378 41661	944 8859	6322 50520	0.23 0.23	12.1 3.8	257.7 59.1	25. 10.
Pambula River Curalo Lagoon	29772	749 750	1183	40150 3681	5569 274	45719 3955	0.21	41661 3872	8859 513	50520 4385	0.23	3.8 5.2	59.1 87.3	10.
Shadrachs Creek	1323	765	1232	1481	159	1640	0.16	1504	166	1670	0.21	1.6	4.3	1.
Nullica River	5480	776	1199	6141	743	6884	0.16	6219	902	7121	0.17	1.3	21.4	3.
Boydtown Creek	387	761	1243	460	29	489	0.17	491	57	548	0.19	6.7	98.3	12.
Towamba River Fisheries Creek	102711 650	732 751	1120 1281	123603 806	35231 44	158834 850	0.21 0.17	128333 810	47861 46	176194 856	0.23 0.18	3.8 0.5	35.8 5.8	10. 0.
-isneries Creeк Twofold Bay	650 1109	751 746	1281	806 718	44 83	850 802	0.17	810	46 231	856 1044	0.18		5.8 176.9	0. 30.
Saltwater Creek (Eden)	1712	755	1234	2199	187	2386	0.18	2199	187	2386	0.18	0.0	0.0	0.
Woodburn Creek	1351	759	1220	1615	129	1744	0.17	1615	129	1744	0.17	0.0	0.0	0.
Wonboyn River	33618	797	1223	41501	3769	45270	0.17	41647	3894	45542	0.17	0.4	3.3	0.
Merrica River Table Creek	6057 1729	779 790	1147 1157	7411 1629	2326 390	9737 2018	0.21 0.15	7411 1629	2326 390	9737 2018	0.21 0.15	0.0 0.0	0.0 0.0	0. 0.
	1729	190				2010	0.15	1029	290		0.10	0.0	0.0	
Nadgee River	5888	808	1157	8294	3453	11747	0.25	8294	3453	11747	0.25	0.0	0.0	0.

Note negative values for some changes in flow were caused by spatially averaging surface runoff for every combination of soil type and land-use which introduced rounding errors. Negative values mainly occurred in some baseflows, which are usually much smaller than surface flows, and one total flow.

Hydrodynamic attributes for mostly open estuaries

beak beak <th< th=""><th>D</th><th>Flushing</th><th></th><th></th><th>Tidal p</th><th>Tidal range</th><th>t</th><th>adjustmen</th><th>Entrance a</th><th></th><th>nent</th><th>ing adjustn</th><th>Inlet shoal</th><th></th><th>stment</th><th>eap adju</th><th>Spring/n</th><th></th><th>data</th><th>gauging</th><th>Tidal</th><th></th><th></th></th<>	D	Flushing			Tidal p	Tidal range	t	adjustmen	Entrance a		nent	ing adjustn	Inlet shoal		stment	eap adju	Spring/n		data	gauging	Tidal		
bit bi	ICOLL	No. of				Mean or							Dictore										
Teal Teal Teal Frait Fr										Adopted				Dictorco			Pango						
Date of tidate prime (minor) manage (minor) manage (minor) <th>volume Total fac</th> <th></th> <th>Tidal</th> <th></th> <th></th> <th>•</th> <th>9/ of</th> <th>Tidal</th> <th></th> <th></th> <th>0/</th> <th>Entrance</th> <th></th> <th></th> <th>0/</th> <th>Corina/</th> <th></th> <th>Meen</th> <th>Fort</th> <th>Tidal</th> <th>Tidal</th> <th></th> <th></th>	volume Total fac		Tidal			•	9/ of	Tidal			0/	Entrance			0/	Corina/		Meen	Fort	Tidal	Tidal		
Tiesday Tiesday <t< th=""><th>flushing flushing</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Accumod</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Date of</th><th></th></t<>	flushing flushing								Accumod													Date of	
Entropy pauging manufactory main main <thmain< th=""> <thmain< th=""> main</thmain<></thmain<>	time time							•		•					•	•				•			
Trender River 1702/1988 13.4 0.40 1.40 0.40 0.42 0.40 <th>(days) (days)</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th>•</th> <th>•</th> <th></th> <th></th> <th></th> <th>Fetuary</th>	(days) (days)					•										•		•	•				Fetuary
Cadgen Creak (14/10193) 0.8 0.7 1.4 1.40	27.3	per year									6 SCOULED		(KIII)										
Clagen Outer Outer <t< td=""><td>14.2</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>0</td><td>Shoulda</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	14.2						-				0	Shoulda											
Macha 14/10/1989 2.3 5.5 1.4 0.80 0.649 print -14 0.800 scourd 9 0.972 89 51 3 0.053 160 76 19 0.65 75 19 0.65 333 66 4.0 Beinnyade Creek	5.7						'	51	00	0.042				0.000	-52	spring	0.042	1.245	1.43	0.75	0.0	14/10/1333	
Bunkskikker 11/10/1994 2.27 2.51 1.17 1.20 1.60 sping -14 0.580 socured -9 0.572 89 51 3 0.73 1940 45 7.6 Tallow Creek Tallow Creek Tallow Creek Tallow Creek 0.919 422 353 3 0.41 14302 12 28.7 6.2 Tallow Creek Tallow Creek Tallow Creek 1.04 0.919 422 353 3 0.41 14304 57 6.8 6.8 0.976 109 39 3 0.71 1404 57 6.8 0.500 1.013 50 6.4 1.8 1.80 1.80 3 0.41 1.83 6.1 1.80 3.0 3 0.41 1.93 6.1 1.80 6.8 7.3 1.80 0.25 1.80 0.80 0.80 0.83 0.83 0.30 0.71 1.80 6.8 6.7 6.7 7.3 0.80 0.8	4.0						10	76	106	0.649				0.860	-32	enrina	0.649	0.960	1 /0	0.55	0.63	1//10/1003	
Belongi Creek 35.5 3.0.11 1.490 2.19 2.5 1.64 1.545 0.950 spring 3.9 0.870 scoured 3 0.919 4.22 3.53 3 0.41 14.902 12 2.87 1.83 Saliy Lapon 2.39 2.47 1.83 1.825 0.895 spring -45 0.365 1.100 scoured 8 0.975 109 3.9 3 0.71 1494 57 6.1 1.44 Careone River 2.410/1996 3.9.22 4.13 1.35 1.240 0.226 spring -30 0.500 scoured 1.3 0.838 2.08 2.49 2.7 0.48 11.94 19.88 1.4 1.4 1.44 <td>7.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-9</td> <td>scoured</td> <td></td>	7.6										-9	scoured											
Table Table <th< td=""><td>10.3 43.3</td><td>35.5</td><td>7.0</td><td>40</td><td>1040</td><td>0.70</td><td>0</td><td>01</td><td>00</td><td>0.072</td><td>0</td><td>Scourca</td><td></td><td>0.000</td><td>14</td><td>oping</td><td>1.000</td><td>1.200</td><td></td><td>2.01</td><td>2.21</td><td>11/10/1004</td><td></td></th<>	10.3 43.3	35.5	7.0	40	1040	0.70	0	01	00	0.072	0	Scourca		0.000	14	oping	1.000	1.200		2.01	2.21	11/10/1004	
Bracker head Creek Set 1.64 0.85 spring 3.9 0.870 6.870 sound 0.919 4.2 5.3 0.41 1.020 1.2 7.3 Salty Lagoon Salty Lagoon Salty Lagoon Salty Lagoon Salty Lagoon 1.043 5.02 1.03 0.919 4.2 5.03 0.41 1.020 1.0 1.042 3.0 1.043 5.0 1.04 3.0 1.043 5.0 1.04 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 1.0 3.0 3.0 2.0 1.0 3.0 3.0 3.0 1.0 3.0 3.0 3.0 3.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	24.4 24.4																						
Richmond Hvier 3111/1994 21.9 25. 1.64 1.54 0.850 spring -30 0.870 scoured -30 0.919 422 353 3 0.41 1302 12 28.7 Evana River 6002/1980 2.38 2.47 1.38 1.625 0.985 spring -5 0.365 1.100 shoaled 8 0.975 1.09 39 3 0.71 1.49 57 1.43 Liske Arragen 24/10/1996 39.72 41.34 1.55 1.20 0.25 0.500 shoaled 2 0.944 303 7.3 1 0.25 3102 1.4 1.40 .40 1.40 .40	70.7 70.7																						
Salty Lagoon 5.81/2 Lagoon 5.81/2 Lagoon 5.81/2 Lagoon 5.81/2 Lagoon 5.81/2 Lagoon 1.44 5.81/2 Lagoon 1.44 Lake Arragan Cackora Lagoon 5.81/2 Lagoon 1.44 <td>28.7</td> <td>5.2</td> <td>20.7</td> <td>12</td> <td>14202</td> <td>0.41</td> <td>2</td> <td>252</td> <td>122</td> <td>0.010</td> <td>2</td> <td>courod</td> <td></td> <td>0.970</td> <td>20</td> <td>coring</td> <td>0.050</td> <td>1 5 4 5</td> <td>164</td> <td>25</td> <td>21.0</td> <td>2/11/100/</td> <td></td>	28.7	5.2	20.7	12	14202	0.41	2	252	122	0.010	2	courod		0.970	20	coring	0.050	1 5 4 5	164	25	21.0	2/11/100/	
Evanse Evanse<	101.9 101.9	26	20.7	12	14302	0.41	5	555	422	0.919	-5	scouleu		0.870	-39	spring	0.950	1.545	1.04	25	21.5	3/11/1994	
Jarus Barba Creek 24/10/196 3.72 41.34 1.35 1.240 0.826 spring -2 0.450 0.500 sholed 2 0.94 933 173 1 0.25 1.28 1.28 1.3 1.2 1.28 4.3 1.3 1.28 1.29 1.20 1.43 spring -3 0.050 sholed 2 0.94 933 173 1 0.2 10.2 1.0 1.4 1938 81 4.2 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.	6.1	3.0	61	57	1404	0.71	2	20	100	0.075	0	choolod	1 100	0.265	45	coring	0 905	1 625	1 92	2 47	2 20	6/02/1090	
Clamber River 24/10/196 39.72 41.34 1.35 1.240 0.926 spring -25 0.450 0.500 should 2 0.944 393 173 1 0.25 31028 11 31.3 Cakor Lageon Sandon River 907/1990 2.44 3.25 1.45 1.500 1.464 393 1.04 502 26 1 1.04	25.3 25.3	14.4	0.1	57	1434	0.71	5	39	109	0.975	0	silualeu	1.100	0.303	-40	spring	0.095	1.025	1.05	2.47	2.30	0/02/1900	
Lake Arragan Cackora Lagon	31.3	14.4	31.3	11	31028	0.25	1	173	303	0 044	2	shoaled	0 500	0.450	-25	enrina	0 026	1 240	1 35	11 3/	30 72	24/10/1006	
Cakora Lagoon 30 Sandon River 907/180 2.4 3.25 1.64 1.64 1.64 1.64 0.43 spring 3.3 1.30 scoured 1.3 0.838 2.08 2.49 2.7 0.45 1.16 1.40 93.6 3.1 3.00 scoured 1.30 0.838 2.08 2.49 2.7 0.45 5.12 3.3 0.47 7.3 Corind River 5.12 3.3 1.04 7.7 Pipe Clay Creek 5.1	551.8 551.8	07	51.5		51020	0.23	1	175	535	0.344	2	Shoaidu	0.000	0.430	-20	spring	0.320	1.240	1.00	41.34	53.1Z	24/10/1390	
Sandon New 9007/1890 2.44 3.25 1.45 1.50 1.043 spring -30 0.500 1.043 50 26 1 1.04 1936 81 4.2 VociNWooli Wooli Wooli Wool VociNWooli Wooli Wooli Wooli Wooli VociNWooli Wooli	120.6 120.6																						0
Woold Novel River 2002/2003 1.57 1.69 1.66 1.460 0.946 sping -35 1.30 scoured -13 0.838 208 249 27 0.45 1185 45 7.6 Corind River File Station Creek	4.2	3.0	12	81	1036	1.04	1	26	50	1 0/13				0 500	-30	enrina	1 0/13	1 500	1 /5	3 25	2 0/	9/07/1980	
Station Creek Statin Creek Station Creek Station C	4.2										12	courod											
Control River 9.45 5.12 3.3 10.4 Pipe Cay Creek 5.12 3.3 10.4 Darkun Creek 5.12 3.3 10.4 Darkun Creek 5.12 3.3 10.4 Darkun Creek 5.12	50.1 50.1	7 2	7.0	40	1105	0.45	21	249	200	0.030	-13	scouleu		1.300	-35	spring	0.940	1.400	1.50	1.09	1.57	20/02/2003	
Pipe Clay Creek 21.7 Arrawara Creek 15.1 Darkum Creek 15.1 Woodgolg Lake 5.2 Flat Top Point Creek 21.7 Moonee Creek 15.1 Pine Brush Creek 15.1 South Moreek 15.1 Bornbee Creek 15.1 Bondingeree Creek 15.1 Bondingeree Creek 15.1 Bondingeree Creek 10.62.1 113.3 112.2 30.0 0.61 448.8 61 5.7 Bondingeree Creek 10.90/2001 5.49 0.52 1.56 1.20 0.74 0.75 1.30.0 0.74 0.75 5.53 15 0.59 436 61 614.6 Ballingere Creek 20.2 0.28 1.70 0.265 0.158 spring< -41	10.4	7.5	10.4	22	512	0.45																	
Arissaria Creek	16.8 52.0	01 7	10.4		512	0.45																	
Darkun Creek 900/900/90 Lake 900 10000000000000000000000000000000000	24.2 24.2																						1
Woolgoolga Lake See 145 See 14	17.8 55.0																						
Flat Top Point Creak 543 0.621 505 0.764 475 553 15 0.50 0.62 202 0.621 501	16.5 52.7																						
Hears Lake	17.5 54.9																						
Moore Creek 9.45 0.66 0.52 0.65 0.52 0.45 0.890 0.621 spring -30 0.710 0.621 193 112 30 0.61 488 61 5.7 Boamble Creek 5/05/2005 0.56 0.52 1.45 0.890 0.621 spring -31 1.330 0.621 193 112 30 0.61 488 61 5.7 Boundiageree Creek 500/5/2005 0.59 6.27 1.56 0.342 spring -31 1.330 0.342 118 106 21 0.61 488 61 5.7 Bundageree Creek 500/5/2005 0.59 6.27 1.56 0.784 spring -31 1.300 0.710 0.342 118 106 21 0.61 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 1.30 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 <td>56.7 56.7</td> <td></td>	56.7 56.7																						
Pine Brush Creek String <	13.4	0.4	12/	26	106	0.45																	
Coffs Creek 5/05/2005 0.56 0.52 1.45 0.890 0.621 spring -30 0.710 0.621 193 112 30 0.61 488 61 5.7 Boamble Creek 21/08/197 0.74 0.75 1.46 0.895 0.342 spring -31 1.30 0.342 118 106 20 42 488 61 5.7 Bundageree Creek 50/01/201 5.49 6.27 1.56 1.210 0.784 spring -35 1.300 0.342 118 106 0.59 4365 30 11.4 Bundageree Creek 50/04/2002 0.22 0.28 1.70 0.784 spring -15 0.600 0.784 475 5.53 15 0.59 4365 20 11.4 10.2 0.784 475 5.53 15 0.59 4365 16.1 10.2 1.61 10.2 10.2 10.7 1.38 1.42 0.45 16.1 10.2 16.1 10.2 10.2 1.51 0.500 2.800 shoaled 1 </td <td>4.3 24.6</td> <td>94 5</td> <td>13.4</td> <td>20</td> <td>100</td> <td>0.45</td> <td></td>	4.3 24.6	94 5	13.4	20	100	0.45																	
Boambee Creek 5/05/2005 0.56 0.52 1.45 0.890 0.621 spring -30 0.710 0.621 193 112 30 0.61 488 61 5.7 Bonville Creek 21/08/1997 0.74 0.75 1.46 0.495 0.342 spring -31 1.330 0.342 118 106 21 0.34 62 42 8.1 Bundageree Creek 5 1.909/2001 5.49 6.27 1.56 1.210 0.784 spring -35 1.300 0.784 475 553 15 0.59 4365 30 11.4 Dalhousie Creek 20/02/02 0.22 0.28 1.56 0.600 0.579 spring -12 4.700 scoured -15 0.503 411 0.410 0.48 142 2.47 8.5 Nambucca River 27/09/1999 5.24 3.96 1.15 0.600 0.579 spring -12 4.700 scoured -15 0.503 411 0.411 0.41 10.095 14 23.9	4.3 24.0	04.5	6.2	56	162	0.45																	
Bonville Creek 21/08/1997 0.74 0.75 1.46 0.495 0.342 spring -31 1.330 0.342 118 106 21 0.43 620 42 8.1 Bundageree Creek Bellinger River 19/09/2001 5.49 6.27 1.56 1.210 0.784 spring -35 1.300 0.784 475 553 15 0.59 4365 30 11.4 10.2 Oyster Creek 20 0.22 0.28 1.70 0.265 0.158 spring -41 0.600 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 Suthwater Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.500	5.7						20	112	102	0.621				0 710	20	corina	0.621	0 800	1 45	0.52	0.56	E/0E/200E	
Bundageree Creek 614.6 Bellinger River 19/09/2001 5.49 6.27 1.56 1.210 0.784 spring -35 1.300 0.784 475 553 15 0.59 4365 30 11.4 10.2 Oyster Creek 20/04/2002 0.22 0.28 1.70 0.265 0.158 spring -41 0.600 0.158 126 44 30 0.18 193 14 24.7 8.5 Manbucca River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 61.46 Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 23.9 5.3 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 s	8.1																						
Bellinger River 19/09/2001 5.49 6.27 1.56 1.210 0.784 spring -35 1.300 0.784 475 553 15 0.59 4365 30 11.4 Dalhousie Creek 0yster Creek 26/04/2002 0.22 0.28 1.70 0.265 0.158 spring -41 0.600 0.158 126 44 30 0.18 193 14 24.7 8.5 Nambucca River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 2.0 Sot	0.6 7.8	614.6	0.1	42	020	0.43	21	100	110	0.342				1.550	-31	spring	0.342	0.495	1.40	0.75	0.74	21/00/1997	
Dahousie Creek 26/04/2002 0.22 0.28 1.70 0.265 0.158 spring -41 0.600 0.158 126 44 30 0.18 193 14 24.7 8.5 Nambucca River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 0.994 spring -4 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10.09 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 0.994 spring -12 0.550 scoured -27 0.864 25	11.4	014.0	11 /	20	1265	0.50	15	552	475	0 794				1 200	25	corina	0 794	1 210	1 56	6 27	F 40	10/00/2001	
Oyster Creek 26/04/2002 0.22 0.28 1.70 0.265 0.158 spring -14 0.600 50.158 126 44 30 0.18 193 14 24.7 8.5 Manbucca River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleag River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.050 0.994 24 1 0 0.48 241 37 9.3 5.3 South West Rocks Creek 23/11/1977 0.31 1.947 1.15 1.200 1.000 spring -12 0.550 scoured -27 0.864 256 <td>35.8 35.8</td> <td>10.2</td> <td>11.4</td> <td>30</td> <td>4303</td> <td>0.59</td> <td>15</td> <td>555</td> <td>475</td> <td>0.764</td> <td></td> <td></td> <td></td> <td>1.300</td> <td>-35</td> <td>spring</td> <td>0.764</td> <td>1.210</td> <td>1.50</td> <td>0.27</td> <td>5.49</td> <td>19/09/2001</td> <td>0</td>	35.8 35.8	10.2	11.4	30	4303	0.59	15	555	475	0.764				1.300	-35	spring	0.764	1.210	1.50	0.27	5.49	19/09/2001	0
Deep Creek 26/04/2002 0.22 0.28 1.70 0.265 0.158 spring -41 0.600 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleag River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleag River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.050 2.800 shoaled 1 0.836 209 96 1 0.44 20 7 8.5 Sattwater Creek (Frederickton) 1.05 1.035 0.994 spring -12 0.550 scoured -27 0.864 25	21.0 21.0																						
Nambuca River 27/09/1999 5.24 3.96 1.15 0.660 0.579 spring -12 4.700 scoured -15 0.503 411 1460 42 0.47 4966 21 16.1 Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.50 2.800 Nonloce 0.994 24 1 0.48 241 37 9.3 5.3 Goolawah Lagoon 4 0.50 scoured -27 0.864 256 132 1 0.54 14220	43.2 43.2		24.7	14	102	0.19	20	44	126	0 159				0 600	41	corina	0 159	0.265	1 70	0.20	0.22	26/04/2002	,
Macleay River 21/02/1979 16.48 16.65 1.70 1.385 0.824 spring -41 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.500 2.800 shoaled 1 0.836 209 96 1 0.41 10095 14 23.9 South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 spring -4 0.500 2.800 shoaled 0.994 24 1 0 0.48 241 37 9.3 Sattwater Creek Fredericktron	45.2 45.2	0.5									-15	scoured											
South West Rocks Creek 23/11/1977 0.31 0.19 1.05 1.035 0.994 \$pring -4 0.050 0.994 24 1 0 0.48 241 37 9.3 Saltwater Creek (Frederickton) 0.45 97 78 4.4 22 Korogoro Creek 0.45 97 78 4.4 22 Goolawah Lagoon 36 97 78 1.05 1.00 spring -12 0.550 scoured -27 0.864 256 132 1 0.54 14220 27 12.7 Cathie Creek 2/04/1982 0.22 0.35 1.33 0.290 0.220 spring -24 0.500 0.220 181 56 26 0.03 272 3 106.0 1.1 Duchess Gully 2 0.490 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	23.9						+2						2 800										
Saltwater Creek (Frederickton) 5.3 Korogoro Creek 0.45 97 78 4.4 2.2 Killick Creek 2.2 2.2 3.6 3.6 Hastings River 24/10/1999 21.31 19.47 1.15 1.250 1.100 spring -12 0.550 scoured -27 0.864 256 132 1 0.54 14220 27 12.7 Cathie Creek 22/04/1982 0.22 0.35 1.33 0.290 0.220 spring -24 0.500 0.220 181 56 26 0.03 272 3 106.0 1.1 Duchess Gully Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	9.3						1					siloaleu	2.000										
Korogoro Creek 0.45 97 78 4.4 Kilick Creek 000lawah Lagoon	9.3 68.4 68.4	53	5.5	57	241	0.40	0		24	0.554				0.030	-4	spring	0.554	1.035	1.05	0.19	0.31		
Killick Creek 2.2 Goolawah Lagoon 3.6 Hastings River 24/10/1999 21.31 19.47 1.15 1.200 spring -12 0.550 scoured -27 0.864 256 132 1 0.54 14220 27 12.7 Cathie Creek 22/04/1982 0.22 0.35 1.33 0.290 0.220 spring -24 0.500 0.220 181 56 26 0.32 27 3 106.0 1.1 Duchess Gully 2 0.46 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	4.4	0.5	11	70	07	0.45																''	
Goolawah Lagoon Hastings River 24/10/1999 21.31 19.47 1.15 1.20 1.10 spring -12 0.550 scoured -27 0.864 256 132 1 0.54 14220 27 12.7 Cathie Creek 22/04/1982 0.22 0.35 1.33 0.290 0.20 spring -24 0.500 0.20 181 56 26 0.03 272 3 106.0 1.1 Duchess Gully Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	4.4 166.9 166.9	2.2	4.4	10	97	0.45																	
Hastings River 24/10/1999 21.31 19.47 1.15 1.20 1.10 spring -12 0.550 scoured -27 0.864 256 132 1 0.54 14220 27 12.7 Cathie Creek 2/04/1982 0.22 0.35 1.33 0.290 0.220 spring -24 0.500 0.200 181 56 26 0.03 272 3 106.0 1.1 Duchess Gully Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	101.3 101.3																						
Cathie Creek 22/04/1982 0.22 0.35 1.33 0.290 0.220 spring -24 0.500 0.220 181 56 26 0.03 272 3 106.0 1.1 Duchess Gully 52.3 Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	101.3 101.3	3.0	127	27	1/220	0.54	1	100	256	0.864	-27	scoured		0.550	-12	enring	1 100	1 250	1 15	10 /7	21 21	24/10/1000	
Duchess Gully 52.3 Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	319.1 319.1	1 4					26				-21	scoured											
Camden Haven River 18/09/1997 7.56 7.75 1.71 1.255 0.742 spring -41 1.000 1.400 shoaled 5 0.779 115 103 2 0.16 4854 4 80.6	7.0 30.7		100.0	3	212	0.03	20	50	101	0.220				0.000	-24	spring	0.220	0.290	1.55	0.55	0.22	22/04/1302	
	80.6	32.3	80 6	4	1851	0.16	2	102	115	0 770	F	chooled	1 /00	1 000	-/11	enring	0 742	1 255	1 71	7 75	7 56	18/00/1007	,
maning river	31.6						-				-		1.400										
	32.2 32.2	11.3	31.0		10403	0.35	07	4200	009	0.595	-33	scoured		0.000	-00	spring	0.700	1.100	1.01	10.00	14.03	3/11/1990	
	9.2 34.9	39.6																					
biack mead Lagoon 39.6 Walis Lake 28/03/1998 13.8 16.6 1.68 1.375 0.827 spring -40 0.350 0.800 shoaled 7 0.887 137 46 0 0.11 9851 5 76.0	9.2 34.9 76.0	39.0	76.0	F	0054	0.14	0	16	107	0 007	7	choolod	0 000	0.250	40	enring	0 007	1 275	1 60	16 6	12.0	28/02/1009	
Wallis Lake 26/03/1998 13.8 16.6 1.68 1.375 0.627 spring -40 0.350 0.600 shoaled 7 0.867 137 46 0 0.11 9851 5 76.0 .0.4	915.8 915.8	0.4	70.0	5	9021	0.11	0	40	137	0.007		Shoaled	0.000	0.550	-40	spring	0.027	1.375	1.08	10.0	13.8	20/03/1998	
Smiths Lake 0.4 Vial River 0.4 0.45 49955 11 30.8	915.8 915.8 30.8	0.4	20.9	11	10055	0.45																	
wyan (we)	30.0		30.0	11	49900	0.45																	wyan NVE

Image: space			Tidal	gauging	data		Spring/r	neap adju	stment		Inlet shoal	ing adjust	ment		Entrance	adjustmen	t	Tidal range Mean or				Flushing No. of			Dilution
Image Image <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Distance</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ICOLL</th><th></th><th></th></th<>											Distance												ICOLL		
best of prim							Range			Distance				Adopted											Dilution
Diate Diate Traine Traine <th></th> <th></th> <th></th> <th></th> <th>Fort</th> <th>Mean</th> <th>adjusted</th> <th>Spring/</th> <th>%</th> <th>entrance</th> <th>to water</th> <th>Entrance</th> <th>%</th> <th>tidal</th> <th></th> <th>Tidal</th> <th>% of</th> <th>including</th> <th>prism</th> <th>estuary</th> <th>Tidal</th> <th>breakout</th> <th>volume</th> <th>Total</th> <th>factor for</th>					Fort	Mean	adjusted	Spring/	%	entrance	to water	Entrance	%	tidal		Tidal	% of	including	prism	estuary	Tidal	breakout	volume	Total	factor for
Exam control for contro contro contro <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>shoaled</th> <th></th> <th>10%</th>				•									shoaled												10%
Scale berry Scale berry <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>annual</th>					•													•							annual
Thing Control Sold															width (m)	(MI)	prism						(days)		runoff
Puril Segurar 90080989 08 0.22 2.03 1.01 1.01 1.01 1.01 1.012		29/09/1993	12.0	14.05	1.06	1.295	1.231	spring	-5	0.000	0.000	scoured	-9	1.125											0.870 44.658
Hame form Brance Lagen Br		30/09/1993	165	150	1 10	1 170	1 072	spring	-8	0.000				1 072											31.438
Genome Super-like Superlike Superlike <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>6 300</td> <td>shoaled</td> <td>1</td> <td></td> <td>588</td> <td>2124</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.604</td>									-		6 300	shoaled	1		588	2124	10								0.604
Likak Barginging 10,401/196 11,10 10,20 2,00 9		0,10,1000	20.2	20.0			1.010	opinig	20	0.000	0.000	onoulou			000	2.2.		0.12	20000		20.1	17.7	20.6		0.086
Monte siche Creek Tagenen Like Field 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 1.00 90.00 2.9 1.00 <th1.00< th=""> 1.00 1.00</th1.00<>		16/04/1996	11.18	10.89	1.32	1.170	0.897	spring	-23	0.500				0.897	902	430	5	0.08	8888	3 1	249.9				57.097
Taggera hale 16/12/1983 2.59 2.59 2.59 1.50 0.083 949 19 0.03 227 1 282 0.8 477 478 Teameral Lagan Teameral Lagan Teameral Lagan Teameral Lagan 18	Middle Camp Creek																					34.0	10.7	36.7	0.027
Number lagon Number lagon<																									0.003
Taring Lagon Series Seris Se	Tuggerah Lake	16/12/1993	2.59	2.59	1.39	1.370	0.993	spring	-27	1.000				0.993	348	349	19	0.03	2227	' 1	298.2	0.8			15.516
Axota Laki Corcional Lawi Corcional Lawi Corcional Lawi 0.48 21.9 1.49 1.40 1.90 9.94 0.94 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.677</td></td<>																									4.677
Cockore Lake Unit																									0.467
Bitaban Water Bitaban																									0.916 1.063
Hawksebuy River 60/41/93 191 193 1.58 1.58 1.58 1.640 spins -36 0.00 1.040		2/05/1090	25.9	21.2	1 /2	1 240	0.049	coring	20	0.000				0 0 4 9				0.45	11790	11	24.6	2.8	130.5		20.589
Pitwair Pitwair India Head Head <td></td> <td>6.369</td>																									6.369
Braken bay Number ben lago U/2 U/2 <tr< td=""><td>,</td><td>0/04/1000</td><td>101</td><td>100</td><td>1.00</td><td>1.000</td><td>1.040</td><td>oping</td><td>00</td><td>0.000</td><td></td><td></td><td></td><td>1.040</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>285.561</td></tr<>	,	0/04/1000	101	100	1.00	1.000	1.040	oping	00	0.000				1.040											285.561
Name Name 110911990 0.28 0.5 1.5 0.165 0.145 spin 2.150 0.145 2.37 2.05 60 0.24 546 10 3.0 3.1 11.00 <																									0.679
Curi Gunon Marky Lagoon 72 472 472 472 Midde Harbour Creek 101 3010 24 457 457 Mande Lagoon 101 3010 24 457 457 Paramata Nire 101 3010 24 457 457 Paramata Nire 100 301922 843 1.58 1.08 spin 3 1.08 24 49 0 0.63 1401 50 2.2 4.3 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 1.08 2.2 2.2 2.2 2.0 0.83 1.08 1.08 1.08 1.09 2.2 1.03 1.08 1.0 2.2 2.2 0.985 9.1 2.03 1.08 1.0 2.2 2.0 0.085 9.1 2.0 1.00 2.2 1.0 2.2 2.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <	Narrabeen Lagoon	11/09/1980	0.28	0.5	1.15	0.165	0.145	spring	-12	1.500				0.145	237	205	60		546	5 10	33.0	3.1	119.0	119.0	3.893
Main Mathematican Creak	Dee Why Lagoon																								0.033
Midde farabard. Creak Hord Bellam Group River 1.01 6163 8 4.7 5.7 4.7 Para natta River Pert Jackson 1902/192 83.22 81.43 1.56 1.95 1.03 0.000 scoured -3 1.001 1.016 1.016 1.028 8.8 4.56 7.3 Cooks River 1.002/192 83.82 81.80 1.22 1.058 scoure River 1.01 1744 10 1.058 4.74 49 0 0.68 4.64 1.65 3.2 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.214</td></t<>																									0.214
Lane Core River 9103/1929 8.1.2 81.4.3 1.5.6 1.5.9.5 1.0.9 9.0.00 sourced 3 1.0.0 1.0.9 1.0.0 1.0.9 1.0.																						28.2	13.0		0.068
Part analta River Port Jackson 10/01/19/2 8.2.8 6.1.8.8 6.1.8.8 port allow spin Jackson 3 1.0.0 1.0.0 1.0.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>30.652</td></th<>																									30.652
Port Jackson 1903/1992 8.32 8.43 1.56 1.03 spin -35 0.00 soon soo																									4.330 14.144
Cooles Niver 1001 1154 106 3.2 3.2 Georges Niver 14061191 1.32 1.66 1.22 1.20 1.06 3.7 1.00 3.6 5.3 6.85 0.65 0		10/02/1002	02.22	01 /2	1 56	1 5 0 5	1 024	coring	25	0.000	0.000	coourod	2	1 009											32.492
George River 14/08/198 19.3 16.66 1.22 1.28 1.28 1.08 spin 1.01 1.06 474 49 0 0.63 14913 5 6.25 1.53 6.98 39.9		19/03/1992	03.22	01.43	1.50	1.595	1.034	spring	-35	0.000	0.000	scouleu	-3	1.000											0.391
Bota 9.99. 9.99. 39.0 30.0		14/08/1991	19.32	16.66	1.22	1.280	1.058	spring	-17	0.100				1.058	474	49	0								17.206
Port field/inform 15/03/1978 5.53 6.58 0.665 0.685 0.896 9.41 2109 22 1.03 11809 11 30.6								1 3											37943	9	39.9				22.650
Hargerse Creek 98.3 3.6 7.1 Gianwall Creek 98.3 3.7 7.9 Woodlands Creek 98.3 3.7 7.9 Woodlands Creek 98.3 3.7 7.9 Bellambil Gully 98.3 7.9 38.3 7.1 Bellambil Gully 98.3 8.7 7.4 7.4 Bellambil Gully 98.3 8.7 7.4 7.4 Bellambil Gully 98.3 8.7 7.4 7.4 Bellambil Gully 98.3 8.7 7.4 7.5 Bellambil Gully 99.3 8.7 7.4 7.5 Bellambil Gully 99.3 8.7 8.7 7.9 Carger Creek 99.3 8.7 8.7 7.9 Carger Creek 99.3 9.5 9.7 8.2 7.5 Carger Creek 99.3 9.0 9.8 9.0 9.0 9.7 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6		15/03/1978	5.53	6.98	0.65	0.635	0.985	neap	55	2.250				0.985	941	2109	22	1.03	11809) 11	30.6			30.6	35.924
Starwall Creek 914 9.6 9.5 9.7 Planagans Creek 914 9.6 9.6 9.6 9.6 Stalcy Creek 914 9.8 9.7 9.8 9.8 9.8 9.8 <td>Wattamolla Creek</td> <td></td> <td>0.062</td>	Wattamolla Creek																								0.062
Flangang Creek 9395 9.1 8.6 Woodland Creek 9395 9.1 8.6 Bellambi Guly 97.2 97.4 1.8 1.1 Towradj Creek 97.2 97.4 97.4 1.8 2.10 Fairy Creek 97.4 9.4 9.4 9.4 2.27 Bellambi Lak 97.4 9.4 9.4 9.4 2.0 Port Kembla 97.4 9.4 9.4 2.0 1.0 4.0 Bellambi Munora Creek 1.00 9.2 9.0 76 0.02 1.64 1.0 1.0 4.0 Spring Creak 1.00 9.28 9.00 1.00 2.07 76 0.02 1.64 0.0 1.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.006</td></t<>																									0.006
Moadfands Creak Siacky Creak 13.4 2.4 13.4 Bellambi Gully 17.4 13.6 2.7 13.6 2.7 Bellambi Gully 17.4 13.6 2.7 13.6 2.7 Bellambi Gully 17.4 2.8 12.7 13.6 2.7 14.7 Bellambi Gully 17.4 2.8 12.7 13.6 2.7 14.7 Bellambi Greak 17.4 14.7 14.7 14.7 14.7 14.7 Allans Creak 17.4 14.9 14.9 14.9 2.7 15.9 50 6.9 - - 6.9 - - 6.9 - - 2.0 14.9 14.9 2.0 20.0 14.1 14.9 2.0 20.0 14.1 14.9 2.0 20.0 14.1 14.9 2.0 20.0 20.0 16.9 10.1 14.9 2.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.																									0.008
Slack Creek 97.4 97.4 1.8 91.5 Belambi Gully 97.4 97.4 1.8 1.15 Belambi Lake 17.0 1.8 2.17 Townagi Creek 57.7 5.4 2.27 Fairy Creek 1.0 1.86 2.07 5.4 2.51 Alians Creek 5.4 5.9 50 6.0 2.7 Port Kembla 1.8 1.8 1.8 1.8 1.8 Lake Illawara 2.903/1994 0.34 0.54 0.00 0.025 400 2.07 76 0.02 7.6 1.6 2.9 2.0 Lake Illawara 2.903/1994 0.34 0.64 1.64 0.02 7.6 0.02 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6 0.2 7.6 1.0 1.0 0.0 0.0 2.0 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 7.6 0.02 <td></td> <td>0.001</td>																									0.001
Belamin Guly 943 9.94 <td></td> <td>0.004 0.003</td>																									0.004 0.003
Belambi Laké 547 548 218 218 218 Towardgi Creek 577 64 227 Allans Creek 519 50 69 69 69 Dort Kembla 510 519 64 20.0 20.0 Elikoit Lake 21/02/1992 1.28 1.2 1.04 0.325 spring 38 1.000 0.025 400 207 76 0.02 746 1 342.1 1.4 20.02 26.1 1.01 <td< td=""><td> ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.003</td></td<>	,																								0.003
Towradgi Creek 54 22.7 Fairy Creek 54 54.9 50 6.9 50 6.4 25.3 Port Kembla 50 6.4 0.02 10.01 1385 16 0.09 50 6.9 Lake Illawarra 29/03/1994 0.34 0.54 1.64 0.005 400 20.7 76 0.02 1.04 10 26.7 26.1 10.1 26.1 10.1 26.1 10.4 26.9 26.7 26.1 10.1 26.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000</td></td<>																									0.000
Fairy Creak Fairy Creak 51 51 64 25.3 Allans Creak 101 1385 51 6.9 50 6.9 Port Kembla 1.01 1385 16 20.9 26.0 26.																									0.021
Port Kembla Port Kembla 1.01 1385 16 20.9 20.9 Lake Illawarra 2/03/1994 0.34 0.54 0.54 0.025 spring -8.0 0.025 400 207 76 0.02 16 1 24.21 1.44 240.7 26.0 1 20.02 1.00 0.025 400 207 76 0.02 76 0.02 1.01 20.7 1.00 0.025 1.00 207 1.00 0.05 1.00 207 1.05 1.00 1.01 207 1.05 1.00 20 1.05 1.01 20 1.05 1.01 20 1.05 1.01 20 1.05 1.04 1.05 21.2 1.02 1.02 20.05 1.04 1.05 21.2 1.02 21.2 1.04 1.05 21.2 1.04 3.05 1.04 3.05 1.04 3.05 0.040 0.040 0.838 429 1.58 4 0.14 3.04 <td></td> <td>57.1</td> <td></td> <td></td> <td>0.035</td>																						57.1			0.035
Lake Illawarra 29/03/1994 0.34 0.54 1.64 0.025 spring -38 1.00 0.025 400 207 76 0.02 746 1 342.1 1.4 260.7 260.7 Elliot Lake Minnamura River 21/02/1992 1.28 1.20 1.40 1.385 1.001 spring -28 0.700 1.001 207 145 16 0.95 1041 69 5.0 21.2 17.2 48.8 Munna Munnora Creek 58 58 1.00 9.00 0.025 105 16 0.95 1041 69 5.0 21.2 17.2 48.8 Munna Munnora Creek 58 58 58 58 58 58 58 58 103 26.7 76 0.45 1041 58 2 17.2 48.8 Munna Munnora Creek 58 4.1 1.07 0.885 9.83 spring -5 0.400 0.838 429 158 4 0.14 3802 4 76.2 76 60.4 76 76 </td <td></td> <td>0.382</td>																									0.382
Elliot Lake 21/02/1992 1.28 1.2 1.40 1.385 1.001 spring -28 0.700 1.001 207 145 16 0.95 1041 69 5.0 5.0 5.0 5.0 21/02/1992 1.28 1.20 1.28 1.20 1.28 0.700 1.001 207 145 16 0.95 1041 69 5.0 5.0 5.0 5.0 21/02/1992 1.28 1.28 1.001 207 145 16 0.95 1041 69 5.0 21/02 13.9 2.2 13.9 Wunna Munnora Creek User Lagoon User Lagoon User Lagoon 0.45 115 82 4.2 <																									38.543
Minnamura River 21/02/1992 1.28 1.2 1.40 1.385 1.001 spring -20 1.001 207 1.45 16 0.95 1041 69 5.0 5.0 Spring Creek Munna Munora Creek		29/03/1994	0.34	0.54	1.64	0.040	0.025	spring	-38	1.000				0.025	400	207	76	0.02	746	i 1	342.1				7.530
Spring Creek 21.2 17.2 48.8 Munna Munna Creek 168.9 2.2 13.9 Weri Lagoon 5 0.45 115 82 4.2 42.9 Shoalhaven River 19/04/1989 3.6 4.1 1.07 0.885 0.838 spring -5 0.400 0.838 429 158 4 0.14 3802 4 78.2 78.2 Wollumboola Lake		04/00/4000	4.00	4.0	4.40	4 005	4.004		00	0.700				4.004	007	4.15	10	0.05	40.44	~~	F 0		14.0		0.068
Numa Munora Creek 168.9 2.2 13.9 Weri Lagoon 5.1 115 82 4.2 4.2 Crooked River 0.45 115 82 4.2 4.2 Shoalhaven River 19/04/1989 3.6 4.1 1.07 0.885 0.838 spring -5 0.400 0.838 429 158 4 0.14 3802 4 78.2 78.2 Wollumboola Lake 5 0.400 0.838 429 158 4 0.14 3802 4 78.2 78.2 Cararma Creek 5 5 0.400 0.838 429 158 4 0.14 3802 4 78.2 78.2 Wollumboola Lake 5 5 0.400 0.838 429 158 4 0.45 1073 39 8.6 8.6 8.6 8.6		21/02/1992	1.28	1.2	1.40	1.385	1.001	spring	-28	0.700				1.001	207	145	16	0.95	1041	69	5.0		17.0		0.266 0.072
Werri Lagoon So 4.1 1.07 0.885 0.838 spring -5 0.400 0.838 4.9 158 4 0.16 115 82 4.2 -4.2 -4.2 Shoalhaven River 19/04/1989 3.6 4.1 1.07 0.885 0.838 spring -5 0.400 0.838 429 158 4 0.14 3802 4 26.2 -4.2 -7.82 Wollumboola Lake																									0.072
Crooked River 0.45 115 82 4.2 4.2 Shoalhaven River 19/04/1989 3.6 4.1 1.07 0.835 0.838 spring -5 0.400 0.838 429 158 4 0.14 3802 4 78.2 -78.2 Wollumboola Lake																									0.066
Shoalhaven River 19/04/1989 3.6 4.1 1.07 0.885 0.838 spring -5 0.400 0.838 429 158 4 0.14 3802 4 78.2 78.2 Wollumboola Lake																		0.45	115	5 82	4.2				0.119
Currarong Creek 59.9 6.1 26.4 Carama Creek 0.45 1073 39 8.9 8.9 Wowly Gully 5.7 64.3 64.3 Calala Creek 5.7 64.3 64.3 Curramene Creek 0.45 999 40 8.6 Moona Moona Creek 0.45 999 40 8.6		19/04/1989	3.6	4.1	1.07	0.885	0.838	spring	-5	0.400				0.838	429	158	4								0.625
Carama Creek 0.45 1073 39 8.9 8.9 Wowly Gully 5.7 64.3 64.3 Callala Creek 355.9 1.0 8.8 Currambene Creek 0.45 999 40 8.6 Moona Moona Creek 33.8 10.8 35.8	Wollumboola Lake							. 5														0.8	437.7	437.7	4.807
Wowly Gully 5.7 64.3 64.3 Callala Creek 35.9 1.0 8.8 Currambene Creek 0.45 999 40 8.6 8.6 Moona Moona Creek 33.8 10.8 35.8																						59.9	6.1		0.022
Callala Creek 355.9 1.0 8.8 Currambene Creek 0.45 999 40 8.6 8.6 Moona Moona Creek 33.8 10.8 35.8																		0.45	1073	39	8.9				10.188
Currambene Creek 0.45 999 40 8.6 8.6 Moona Moona Creek 33.8 10.8 35.8																									0.403
Moona Moona Creek 33.8 10.8 35.8																		0.15	000			355.9	1.0		0.002
																		0.45	999	4 0	ö.b	22.0	10.0		0.442 0.065
																									0.065
																						30.0	5.7	13.1	0.010

		Tidal	gauging	data		Spring/	neap adju	stment		Inlet shoal	ing adjustr	nent		Entrance	adjustmen	t	Tidal range				Flushing			Dilution
										Distance							Mean or default tidal				No. of times	ICOLL		
						Range			Distance	entrance			Adopted				range	. tidal				breakout		Dilution
		Tidal prism	Tidal prism	Fort		adjusted			entrance		Entrance	%			Tidal	% of	including		estuary	Tidal		volume		factor for
	Date of	on flood	on ebb	Denison range	gauging range	for spring	•	change to tidal	to gauging	level	condition at time of				prism in entrance	entrance tidal	50% mangrove		volume at 0.6m	flushing	volume flushed	flushing time	flushing time	10% annual
Estuary	gauging			(m)	•		gauging		line (km)		gauging				(MI)	prism	(m)	•			per year	(days)	(days)	runoff
Captains Beach Lagoon	<u> </u>						5 5 5														16.2	22.5	22.5	0.090
Telegraph Creek																		400050			145.5	2.5	14.9	0.005
Jervis Bay St Georges Basin	30/05/1978	1.3	1.26	0.90	0.580	0.650	neap	12	0.600				0.650	275	137	10	1.01 0.04	122352 1570		55.5 470.7			55.5 470.7	217.031 19.801
Swan Lake	30/03/1978	1.5	1.20	0.90	0.560	0.050	neap	12	0.000				0.050	215	137	10	0.04	1570	'	470.7	0.8	460.5	460.5	14.651
Berrara Creek																					19.0	19.3	49.9	0.140
Nerrindillah Creek																					47.0	7.8	29.2	0.037
Conjola Lake	30/10/1992 30/09/1993	1.47 0.32	1.75 0.38	1.16	0.655 0.935	0.569 0.857	spring	-13	0.600 0.800			-11	0.569 0.769	511 357	242 254	17 88	0.25 0.83	1641 541		56.1 4.0	13.4	27.2	56.1 27.2	5.855 0.241
Narrawallee Inlet Mollymook Creek	30/09/1993	0.32	0.30	1.10	0.935	0.657	spring	-8	0.600		scoured	-11	0.769	357	234	00	0.83	541	60	4.0	155.2	27.2	14.1	0.241
Millards Creek																					393.8	0.9	8.3	0.002
Ulladulla																	1.01	94		12.8			12.8	18.866
Burrill Lake	13/03/2001	0.39	0.3	1.23	0.515	0.422	spring	-18	1.000		scoured	-20	0.352	202		58	0.09	373		162.7	2.8	130.0	130.0	7.480
Tabourie Lake Termeil Lake	17/09/1992	0.21	0.25	1.08	0.435	0.408	spring	-6	0.750		scoured	-59	0.256	85	40	30	0.12	176	16	22.0	4.8 3.8	75.8 96.6	75.8 96.6	0.819 0.957
Meroo Lake																					2.1	170.3	170.3	2.287
Willinga Lake																					6.4	57.2	57.2	0.247
Butlers Creek																					29.3	12.5	38.1	0.039
Durras Lake Durras Creek																					1.9 27.6	187.3 13.2	187.3 38.2	3.513 0.040
Maloneys Creek																					28.9	12.7	36.8	0.042
Cullendulla Creek																	1.01	683		5.0	2.4	153.6	153.6	1.630
Clyde River	26/09/1996	18.74	20.36	1.50	1.360	0.914	spring	-33	1.000				0.914	281	270	2	0.87	13408		13.0			13.0	0.991
Batemans Bay Saltwater Creek (Rosedale)																	1.01	34758	9	37.9	242.3	1.5	37.9 10.0	7.272 0.002
Tomaga River	16/09/1996	0.96	0.96	1.12	0.880	0.792	spring	-10	0.175				0.792	107	17	2	0.75	881	62	5.5	242.5	1.5	5.5	0.574
Candlagan Creek																	0.45	49	95	3.6			3.6	0.085
Bengello Creek	5/04/2000	4.00	4.0	1.44	4.045	0.054		20	0.005	2 000		5	0.000	990	776	22	0.85	4329	43	8.1	131.1	2.8	13.8	0.007
Moruya River Congo Creek	5/04/2000	4.88	4.8	1.44	1.215	0.851	spring	-30	0.825	3.800	shoaled	5	0.892	990	//6	22	0.85	4329	43	8.1	58.6	6.2	8.1 22.7	0.261 0.032
Meringo Creek																					9.8	37.3	37.3	0.150
Kellys Lake																					6.6	55.1	55.1	0.245
Coila Lake	4/00/4004	5 40	4.00	4.00	0.005	0.475		04	4 000				0.475	000	005	04	0.00	4700	00	40.4	0.9	405.0	405.0	11.282
Tuross River Lake Brunderee	1/02/1994	5.49	4.89	1.33	0.625	0.475	spring	-24	1.300				0.475	866	835	21	0.33	4783	26	13.1	4.2	86.7	13.1 86.7	0.406 0.523
Lake Tarourga																					2.3	159.4	159.4	1.241
Lake Brou																					2.2	164.7	164.7	2.528
Lake Mummuga																					2.1 6.2	173.6 58.5	173.6 58.5	2.394 0.306
Kianga Lake Waqonga Inlet	3/12/1986	6.34	6.64	1.73	1.365	0.795	sprina	-42	0.380				0.795	84	29	1	0.56	3810	10	35.3	0.2	50.5	35.3	16.477
Little Lake (Narooma)							-1 5														2.8	128.3	128.3	0.651
Bullengella Lake																					0.3	1259.4	1259.4	5.794
Nangudga Lake Corunna Lake																					2.0 2.1	181.6 174.1	181.6 174.1	1.312 2.617
Tilba Tilba Lake																					1.6	233.8	233.8	2.379
Little Lake (Wallaga)																					1.6	228.9	228.9	1.056
Wallaga Lake	29/03/1995	0.4	0.38	1.33	0.040	0.030	spring	-24	1.500		shoaled	54	0.066	102		13	0.08	726		158.7	3.1	117.5	117.5	5.910
Bermagui River Baragoot Lake	7/11/1990	2.5	2.5	1.46	1.425	0.987	spring	-31	0.150				0.987	139	21	1	1.00	1753	81	4.2	2.2	166.3	4.2 166.3	1.314 1.264
Cuttagee Lake																					3.6	100.3	100.3	1.194
Murrah River																	0.45	302	60	5.7			5.7	0.122
Bunga Lagoon																	o :-	1000		10.5	8.2	44.5	44.5	0.187
Wapengo Lagoon Middle Lagoon																	0.45	1300	32	10.8	4.5	81.5	10.8 81.5	3.350 0.689
Nelson Lagoon																	0.45	427	40	8.7	4.5	01.0	8.7	2.846
Bega River	30/11/2005	0.87	1.4	1.24	0.285	0.233	spring	-18	0.600				0.233	331	123	13	0.32	1050	16	20.9	53.1	6.9	6.9	0.164
Wallagoot Lake																					0.4	1027.1	1027.1	15.208

		Tidal	gauging o	data		Spring/	neap adju	stment		Inlet shoal	ing adjustr	nent		Entrance a	djustmen	t	Tidal range	Tidal pr			Flushing			Dilution
					-												Mean or		% tidal		No. of		-	
										Distance							default tidal		prism		times	ICOLL		
						Range				entrance			Adopted				range	tidal	to		ICOLL	breakout		Dilution
		Tidal	Tidal	Fort		adjusted	Spring/	%	entrance	to water	Entrance	%	tidal		Tidal	% of	including	prism	estuary	Tidal	breakout	volume	Total	factor for
	Date of	prism	prism	Denison	gauging	for	neap	change	to	level	condition	shoaled	range at	Assumed	prism in	entrance	50%	from	volume	flushing	volume	flushing	flushing	10%
		on flood		range	range	spring	during	to tidal	gauging	station	at time of	or	gauging	entrance	entrance	tidal	mangrove	range x	at 0.6m	time	flushed	time	time	annual
Estuary	gauging	(m ³ x10 ⁶)	(m ³ x10 ⁶)	(m)	(m)	tide (m)	gauging	range	line (km)	(km)	gauging	scoured	line (m)	width (m)	(MI)	prism	(m)	area (MI)	AHD	(days)	per year	(days)	(days)	runoff
Bournda Lagoon																					30.8	11.8	31.0	0.054
Back Lagoon																					6.4	56.9	56.9	0.457
Merimbula Lake	4/04/1978	3.27	1.86	1.30	0.865	0.671	spring	-22	1.800		scoured	-19	0.565	55	77	5	0.36	1752	14	25.3			25.3	20.444
Pambula River	4/10/1979	2.51	3.41	1.47	1.035	0.712	spring	-31	1.200		shoaled	8	0.775	239	256	12	0.61	2473	25	13.6			13.6	1.935
Curalo Lagoon																					2.8	132.0	132.0	1.454
Shadrachs Creek																					99.4	3.7	15.5	0.008
Nullica River																					11.1	32.8	32.8	0.247
Boydtown Creek																					17.5	20.8	20.8	0.057
Towamba River																	0.45	857	42	8.2			8.2	0.116
Fisheries Creek																					5.0	72.9	72.9	0.182
Twofold Bay																	1.01	30976	9	37.1			37.1	17.441
Saltwater Creek (Eden)																					22.2	16.4	38.2	0.070
Woodburn Creek																					18.2	20.0	20.0	0.082
Wonboyn River	15/10/1997	0.62	0.56	1.56	0.150	0.097	spring	-35	1.150				0.097	199	127	33	0.14	508	5	66.4			66.4	2.154
Merrica River							. 0														41.8	8.7	27.0	0.050
Table Creek																					18.7	19.5	43.4	0.082
Nadgee River																					22.5	16.2	39.4	0.076
Nadgee Lake																					0.5	714.3	714.3	8.340

Note for tidal range:
1. Entries in green are for estuaries where the tidal range was adjusted down to allow for high spring ranges at the time of gauging.
2. Entries in red are default values of tidal range for ungauged estuaries.

Sample counts of water quality monitoring data

			Custo-	No. of									Samp	le coun	t									
Estuary	Start	End	dians	samples	Salinity	Temp. I	00 % sat.	DO mg/l	pН	Secchi	Turbidity	Chl a	TSS	TN	TP	NH4	NO3	NO2	Nox	DIN	DIP	DON	DOP	Si
Tweed River	1970	2006	C, N, U	3768	2096	3453	2658	2689	2194	2535	1538	327	2731	2452	2915	45	2384	1	248	110	122	0	0	110
Brunswick River	1971	2008	C, N, U	1419	891	1007	248	888	241	89	852	1062	661	838	892	626	602	0	153	119	452	14	14	119
Belongil Creek	2002	2006	С	456	0	0	0	0	0	0	0	433	0	0	0	0	0	0	0	0	0	0	0	0
Tallow Creek	2002	2006	С	384	0	0	0	0	0	0	0	365	0	0	0	0	0	0	0	0	0	0	0	0
Richmond River	1971	2007	C, N, U	2486	541	1112	520	598	1019	241	743	1344	412	1192	1350	799	37	0	428	452	134	0	0	110
Evans River	2007	2008	N	14	14	14	14	14	12	7	12	12	0	14	14	14	0	0	14	14	14	14	14	14
Clarence River	1913	2004	N, U	6001	639	5783	702	4520	4591	312	3717	888	646	960	1638	683	236	0	327	583	195	0	0	110
Cakora Lagoon	2002	2003	N	27	0	27	0	0	26	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0
Sandon River	1997	2008	N, U	137	136	121	48	121	117	101	109	112	52	109	109	109	88	93	106	109	109	109	109	16
Bellinger River	1971	2003	U	680	112	560	112	249	457	73	502	112	111	112	343	0	4	0	109	112	178	0	0	112
Deep Creek	2002	2002	Ν	4	4	4	4	4	4	0	0	4	4	4	4	4	0	0	4	4	4	4	4	0
Nambucca River	1971	2007	C, U	623	111	440	109	111	328	75	405	172	109	111	229	0	3	0	0	111	111	0	0	111
Macleay River	1970	2003	Ū	2114	109	1937	109	206	1424	73	1276	101	151	112	445	92	126	0	70	109	149	0	0	109
Hastings River	1970	2008	C, N, U	2178	1210	2045	1210	1301	1842	636	1847	670	1193	1212	1431	1100	20	0	1190	129	1228	1100	17	129
Camden Haven River	1971	1995	C, N	683	456	678	456	456	154	220	564	456	455	457	457	456	2	0	456	456	456	456	0	0
Manning River	1970	2007	W, U	7420	3422	5839	2032	3521	3100	1340	3569	1345	1385	359	2838	1451	1710	1410	725	111	183	0	0	110
Khappinghat Creek	1994	2009	Ń	42	42	39	32	35	31	26	42	42	0	32	36	32	0	0	36	32	32	32	32	32
Wallis Lake	1972	2009	N	1056	217	716	202	212	565	110	709	242	29	839	852	268	12	10	604	39	264	264	264	260
Smiths Lake	2002	2007	N, U	573	252	252	6	186	4	17	126	528	4	45	45	547	0	0	547	506	546	45	45	41
Mvall River	1976	2006	N	438	56	204	37	41	271	30	322	70	4	344	349	67	2	2	199	0	53	53	53	53
Karuah River	2007	2008	N	18	18	18	18	18	14	15	16	16	0	16	16	18	0	0	18	18	18	18	17	18
Lake Macquarie	1972	2007	C, N	9830	8261	8362	8262	6488	8530	3334	3120	3569	3328	5766	6700	6003	87	2	6569	4	6495	5672	24	340
Tuggerah Lake	1972	2009	C, N	984	282	794	32	280	753	221	848	42	8	292	516	45	75	7	357	35	36	35	271	32
Wamberal Lagoon	2007	2009	N N	30	28	28	28	28	24	7	18	30	0	30	30	30	0	0	30	30	30	30	30	30
Avoca Lake	2007	2008	C, N	129	125	125	125	125	121	7	129	129	96	129	129	129	Ő	0	129	33	129	129	33	33
Brisbane Water	1992	2005	C, U	704	563	563	548	548	563	105	553	507	507	513	513	507	õ	Ő	513	0	507	507	0	0
Hawkesbury River	1968	2007	C, W	6660	358	4939	2754	2495	3898	179	2189	2421	765	2670	2789	2807	381	0	2627	Ő	2052	358	Ő	0
Narrabeen Lagoon	1995	2007	N, W, U	1308	28	902	899	685	619	0	2100	598	4	674	674	698	0	0	698	28	698	4	4	24
Dee Why Lagoon	1994	2007	C, W	1799	1161	1590	1588	1482	1459	0	1161	1445	1161	1496	1496	1496	0	0	1496	20	1496	0	0	0
Curl Curl Lagoon	1994	2007	C. W	1788	1158	1559	1555	1457	1447	0	1158	1442	1158	1493	1493	1493	0	0	1493	0	1493	0	ő	0
Manly Lagoon	1994	2007	C, N, W	2703	1447	2134	2129	1941	1948	9	1451	2019	1419	2120	2121	2120	0	0	2120	32	2120	32	32	32
Middle Harbour Creek	1995	2000	0, N, W	1928	0	1393	1928	1928	1928	0	0	1922	0	980	980	980	0	0	980	0	2120	0	0	0
Lane Cove River	1995	2007	Ŵ	646	0	466	646	646	646	0	0	644	0	327	327	327	0	0	327	0	0	0	0	0
Parramatta River	1979	2007	C, N	4625	4178	4310	4178	4178	4302	735	2557	4291	4274	4291	4291	4289	0	0	4291	16	4291	4291	12	16
Port Jackson	1995	2000	C, W	7674	110	5480	5448	4169	3710	0	111	3416	116	4018	4021	4018	0	0	4018	0	4015	110	0	0
Cooks River	1995	2007	N, W	1652	4	1084	1072	790	789	4	6	841	7	992	992	992	0	0	992	10	944	10	0	3
Georges River	1978	2007	N, W	3120	71	2034	1799	1395	1558	60	451	1210	87	1414	1642	1594	237	0	1414	118	1408	118	0	40
Botany Bay	2007	2007	N, W	23	13	13	13	1333	7	13	13	20	14	23	23	23	237	0	23	23	23	23	23	40
Port Hacking	1995	2007	Ŵ	1247	0	911	911	694	613	0	0	556	0	657	657	657	0	0	657	23	657	23	23	0
Wattamolla Lagoon	1995	2007	N. W	621	33	394	389	314	266	0	32	285	0	333	333	333	0	0	333	35	333	35	35	32
Stanwell Creek	2007	2008	C C	16	16	15	0	0	200	0	16	16	0	16	16	11	0	0	16	0	0	0	16	0
	2007	2008	c	81	78	78	52	62	62	0		17	8	43	77	74	60	0	17	0	0	0	17	0
Flanagans Creek Slacky Creek	2002	2008	C C	17	78 17	78 16	52 0	62 0	62 0	0	17 17	17	8 0	43 17	17	74 10	00	0	17	0	0	0	17	0
Bellambi Lagoon	2007	2008	C, N	72	71	69	26	31	31	0	41	39	8	46	64	55	29	0	34	0	0	0	34	0
0			,	166		69 147			94	1			8 8					0	34 122	35	71	35		32
Towradgi Lagoon	2002	2008	C, N, U		150		58	102			116	123	-	130	149	138	29	0					81	
Fairy Creek	2002	2009	C, N, U	111	106	107	58	97 170	89	12	74	78	8	82	96	98 482	29 1	-	66	33	66	33	28	32
Lake Illawarra	1976		N, U, LIA	790	208	271	197	170	254	85	369	263	4	223	324	482		0	482	107	484	37	46	219
Minnamurra River	1976	2008	C, N	133	98	127	94	94	121	2	119	89	0	101	102	16	0	0	16	16	16	15	13	16
Spring Creek	2003	2007	С	43	41	39	39	39	41	0	41	33	0	43	43	0	U	0	0	0	0	0	0	0

			Custo-	No. of									Sampl	e count	:									
Estuary	Start	End	dians	samples	Salinity	Temp. D	0 % sat.	DO mg/l	рН	Secchi T	urbidity	Chl a	TSS	TN	TP	NH4	NO3	NO2	Nox	DIN	DIP	DON	DOP	Si
Munna Munnora Creek	2003	2007	С	43	40	40	38	38	40	0	40	38	0	43	43	0	0	0	0	0	0	0	0	0
Werri Lagoon	2003	2007	С	85	82	82	78	78	82	0	81	73	0	85	85	0	0	0	0	0	0	0	0	0
Crooked River	2003	2009	C, N	97	97	97	78	78	97	11	97	84	0	85	85	0	0	0	0	0	0	0	0	0
Shoalhaven River	1908	2008	N, U	794	16	610	16	112	559	13	649	20	3	25	295	169	111	1	21	21	21	21	16	21
St Georges Basin	2002	2009	N, O	79	19	43	28	5	4	19	29	19	14	4	4	44	0	0	24	4	4	4	4	20
Swan Lake	2002	2009	N, U	118	63	62	52	100	52	48	60	70	52	52	100	97	48	0	52	52	85	4	52	0
Conjola Lake	2002	2009	N	23	23	23	4	4	4	15	18	22	4	4	4	4	0	0	4	4	4	4	4	0
Mollymook Creek	2008	2009	N	6	6	6	0	0	0	1	6	6	0	0	0	0	0	0	0	0	0	0	0	0
Burrill Lake	2001	2009	N, U	103	103	103	85	60	76	19	97	103	4	44	44	68	0	0	68	64	64	40	61	60
Tabourie Lake	2008	2009	N	12	10	12	0	0	0	1	11	12	0	0	0	0	0	0	0	0	0	0	0	0
Termeil Lake	2007	2009	N	42	41	42	29	28	29	1	42	42	0	29	29	29	0	0	29	29	29	29	29	29
Meroo Lake	2008	2009	N	12	10	11	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Willinga Lake	2003	2003	U	75	36	36	36	72	36	36	36	39	36	36	72	70	36	0	36	36	55	0	36	1
Durras Lake	1998	2009	N, U	546	112	112	108	108	112	19	112	64	4	187	188	524	0	0	523	64	520	40	38	222
Clyde River	1970	2008	N, U	738	16	577	16	16	259	11	20	378	0	20	159	20	0	0	20	20	20	20	17	20
Tomaga River	2008	2009	N	12	12	12	0	0	12	12	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Candlagan Creek	2008	2009	N	11	11	11	0	0	11	11	11	11	0	0	0	0	0	0	0	0	0	0	0	0
Moruya River	2006	2009	N, U	47	41	47	35	0	35	1	47	47	0	0	0	0	35	0	0	0	0	0	35	0
Congo Creek	2007	2008	N	30	27	27	27	27	27	2	30	30	0	30	30	30	0	0	30	30	30	30	30	30
Coila Lake	1995	2009	N, U	162	104	107	92	71	92	53	106	163	0	72	72	71	21	0	72	36	72	36	57	32
Tuross River	1968	2009	N	1491	48	1261	36	36	1043	48	527	102	4	38	199	36	23	0	36	0	36	0	0	0
Lake Brou	2008	2009	N	12	12	12	0	0	12	12	12	12	0	0	0	0	0	0	0	0	0	0	0	0
Nangudga Lake	2000	2002	U	38	38	38	38	38	38	38	31	0	0	0	0	0	0	0	0	0	0	0	0	0
Corunna Lake	1995	2008	N, U	232	212	212	212	212	212	203	183	50	0	32	32	32	0	0	32	32	32	32	30	32
Tilba Tilba Lake	2008	2009	N	12	10	12	0	0	0	4	12	10	0	0	0	0	0	0	0	0	0	0	0	0
Wallaga Lake	1968	2009	N	576	58	526	248	255	487	49	283	79	25	41	207	60	220	1	55	4	40	4	4	3
Baragoot Lake	1990	2009	N	14	12	12	0	0	14	12	14	12	0	0	0	0	2	1	0	0	0	0	0	0
Cuttagee Lake	2007	2008	N	26	25	25	25	25	25	2	22	26	0	26	25	26	0	0	26	26	24	26	17	26
Wapengo Lagoon	1995	2002	N	94	40	40	40	40	40	15	36	90	4	40	40	40	0	0	40	4	40	4	4	0
Bega River	2008	2009	N	12	12	12	0	0	12	12	12	12	0	0	0	0	0	0	0	0	0	0	0	3
Wallagoot Lake	1984	2009	N	23	22	22	4	4	5	10	20	22	4	4	4	4	1	0	4	4	4	4	4	0
Merimbula Lake	1978	2002	N	48	4	25	25	25	29	0	5	43	25	4	4	25	3	0	17	4	4	4	4	0
Pambula River	1968	2009	N	367	22	299	25	25	262	18	83	61	25	24	5	25	0	0	20	4	4	4	4	0
Curalo Lagoon	1969	1995	N	19	0	0	0	0	1	0	1	18	0	0	0	0	1	1	0	0	0	0	0	0
Towamba River	2008	2009	N	6	6	6	0	0	6	6	6	6	0	0	0	0	0	0	0	0	0	0	0	0
Merrica River	1984	2009	N	63	0	58	0	0	56	0	8	5	0	0	0	0	0	0	0	0	0	0	0	0
Nadgee Lake	2009	2009	Ν	6	6	0	0	0	0	3	6	6	0	0	0	0	0	0	0	0	0	0	0	0

C = Council N = NSW agency (OEH or NSW Office of Water) U = University LIA = Lake Illawarra Authority W = Water Authority O = OzCoasts

Note the datasets listed are from custodians who responded to the initial request for data. Significant additional data are known to be held, particularly by Councils, and were not able to be accessed for a variety of reasons.

Summary statistics for chlorophyll a

Chlorophyll a summary statistics for lake class

Fature	Mall A	Madian	0511 0/11-	7511 0/11-	0011 0/11-	011 0/11-	Eth. 0/11- /		Maar	0110	- 01/	014 5-		
Estuary	Valid N				20th %ile 8		5th %ile 9		Mean	Std Dev	CV		Minimum	
Lakes All (averages)	16700	4.3	2.3	7.7	1.9	8.8	1.3	17.5	6.3	7.7	1.2	0.82	0.00	801.3
Reference Lakes (pooled)	323	1.8	0.9	3.2	0.7	3.6	0.3	5.9	2.4	2.6	1.1	0.15	0.10	32.8
Camden Haven River	456	5.4	2.9	12.4	2.5	14.8	1.0	37.1	10.4	13.7	1.3	0.64	0.10	110.6
Wallis Lake	242	1.7	1.0	2.9	0.9	3.1	0.3	5.3	2.4	4.2	1.8	0.27	0.10	60.0
Smiths Lake	522	1.3	0.8	2.4	0.7	2.7	0.5	6.0	2.5	4.5	1.8	0.20	0.26	38.9
Myall River	70	2.3	1.2	4.6	1.0	4.7	0.4	9.6	3.6	4.6	1.3	0.55	0.23	32.8
Lake Macquarie	3536	2.3	1.2	6.5	1.1	9.2	0.5	65.8	13.0	42.8	3.3	0.72	0.00	801.3
Tuggerah Lake	42	3.5	2.7	5.7	2.4	6.7	1.9	15.4	5.3	4.5	0.8	0.69	1.15	19.7
Wamberal Lagoon	30	3.5	1.9	5.5	1.5	6.0	1.0	14.8	4.9	5.0	1.0	0.92	0.71	23.0
Brisbane Waters	507	3.1	1.9	5.6	1.7	7.3	0.9	19.3	6.3	19.1	3.0	0.85	0.17	384.8
Hawkesbury River	1523	3.5	2.1	6.6	1.9	7.8	1.2	17.5	5.6	6.3	1.1	0.16	0.00	75.1
Narrabeen Lagoon	594	3.5	1.6	6.6	1.4	7.4	0.5	13.4	4.8	4.6	1.0	0.19	0.10	30.0
Middle Harbour Creek	824	2.2	1.3	3.8	1.2	4.4	0.6	9.8	3.3	3.9	1.2	0.14	0.10	36.2
Lane Cove River	274	3.5	1.8	7.3	1.6	8.9	0.5	23.2	6.4	8.3	1.3	0.50	0.20	65.6
Parramatta River	4287	9.7	4.3	23.5	3.8	28.2	2.0	67.1	19.0	27.0	1.4	0.41	0.11	431.3
Port Jackson	1099	1.9	1.3	3.6	1.2	4.0	0.5	8.7	3.2	4.8	1.5	0.15	0.10	75.0
Georges River	1202	3.6	2.1	7.1	1.9	8.5	1.1	18.1	6.0	7.0	1.2	0.20	0.10	56.0
Botany Bay	20	1.6	1.3	2.3	1.3	2.3	1.2	6.1	2.2	1.7	0.8	0.39	0.79	7.9
Port Hacking	552	1.3	0.9	1.8	0.8	1.9	0.4	3.4	1.5	1.3	0.8	0.05	0.10	11.0
Lake Illawarra	263	4.3	2.0	7.6	1.6	9.1	0.1	18.5	6.1	6.2	1.0	0.38	0.05	38.1
St Georges Basin	19	2.6	1.3	3.7	1.1	4.2	1.0	6.0	2.8	1.8	0.6	0.41	0.98	6.2
Swan Lake	69	0.5	0.5	1.4	0.5	1.4	0.4	3.7	1.2	1.4	1.2	0.17	0.23	8.7
Lake Conjola	22	1.5	0.9	2.6	0.9	2.8	0.8	3.3	1.8	0.9	0.5	0.20	0.63	3.5
Burrill Lake	106	4.6	3.2	6.4	2.8	6.9	1.7	13.6	6.1	6.7	1.1	0.65	1.00	55.3
Durras Lake	49	3.2	2.5	4.4	2.4	4.5	1.7	5.1	3.4	1.2	0.4	0.17	0.71	6.2
Coila Lake	160	2.5	1.6	3.3	1.3	3.6	0.5	6.0	2.7	1.8	0.6	0.14	0.10	9.6
Wallaga Lake	79	1.8	0.0	6.4	0.0	7.9	0.0	10.7	3.6	3.9	1.1	0.44	0.00	15.9
Wapengo Lagoon	82	0.5	0.3	1.1	0.3	1.2	0.2	1.8	0.8	0.8	1.0	0.08	0.10	5.8
Wallagoot Lake	22	2.4	1.8	2.9	1.8	3.0	1.4	3.6	2.4	0.8	0.3	0.16	1.26	4.0
Merimbula Lake	43	0.7	0.0	1.1	0.0	1.1	0.0	1.5	0.7	1.0	1.4	0.15	0.00	5.1
Nadgee Lake	6	45.6	22.3	73.6	14.8	82.8	14.3	93.1	49.9	34.1	0.7	13.91	14.11	96.5

Chlorophyll a summary statistics for lagoon class

• •				-										
Estuary	Valid N	Median	25th %ile	75th %ile	20th %ile	80th %ile	5th %ile 9	95th %ile	Mean	Std Dev	C۷	Std Err	Minimum	Maximum
Lagoons All (averages)	6691	5.7	2.9	10.1	2.6	12.1	1.7	25.8	9.1	12.1	1.3	1.92	0.00	1246.5
Reference Lagoons (pooled)	350	1.1	0.6	1.8	0.5	2.0	0.2	4.5	1.7	2.7	1.6	0.14	0.03	29.7
Belongil Creek	331	8.0	4.0	17.0	4.0	21.0	2.0	61.5	20.8	60.4	2.9	3.32	1.00	780.0
Tallow Creek	337	12.0	6.0	24.0	5.0	27.0	2.0	61.2	20.0	27.8	1.4	1.51	2.00	240.0
Khappinghat Creek	42	2.3	1.3	2.7	1.2	2.8	1.0	5.1	2.4	1.4	0.6	0.22	0.24	8.3
Avoca Lake	129	3.1	1.6	6.0	1.3	6.8	0.7	15.2	4.8	6.9	1.5	0.61	0.33	67.9
Dee Why Lagoon	1444	3.1	1.6	6.1	1.4	7.3	0.6	23.6	7.8	36.1	4.6	0.95	0.00	1246.5
Curl Curl Lagoon	1437	3.0	1.4	9.8	1.1	12.8	0.3	51.0	10.8	23.0	2.1	0.61	0.04	376.8
Manly Lagoon	2019	5.3	2.2	12.2	1.8	14.6	0.7	30.6	9.4	12.1	1.3	0.27	0.00	160.0
Wattamolla Creek	283	0.9	0.5	1.6	0.4	1.8	0.2	3.1	1.2	1.3	1.1	0.08	0.03	10.0
Stanwell Creek	15	0.7	0.2	2.1	0.1	2.5	0.1	5.0	1.6	2.1	1.3	0.53	0.10	7.4
Flanagans Creek	16	0.9	0.4	1.3	0.4	1.4	0.3	10.4	2.1	3.5	1.7	0.88	0.30	12.0
Slacky Creek	16	1.6	1.1	2.8	1.0	2.9	0.8	9.9	2.7	3.1	1.2	0.78	0.30	11.4
Bellambi Lake	38	6.7	3.2	10.7	2.5	13.7	0.7	48.5	12.5	17.1	1.4	2.77	0.60	81.0
Towradgi Creek	122	2.6	1.1	5.2	0.5	6.0	0.5	13.6	4.2	4.8	1.1	0.44	0.40	31.2
Fairy Creek	77	5.4	1.4	9.3	1.2	10.4	0.5	15.3	6.3	6.2	1.0	0.71	0.42	34.5
Spring Creek	20	2.2	1.0	4.9	1.0	5.9	0.5	15.1	3.9	4.7	1.2	1.05	0.20	17.4
Munna Munnora Creek	37	0.2	0.1	2.2	0.1	2.2	0.1	4.8	1.3	1.7	1.3	0.28	0.05	6.1
Werri Lagoon	73	0.6	0.1	2.5	0.1	3.1	0.1	12.4	2.8	5.2	1.9	0.61	0.05	30.0
Mollymook Creek	6	23.7	7.2	41.3	5.3	43.6	4.4	54.6	26.4	22.4	0.8	9.14	4.11	58.3
Tabourie Lake	12	1.6	1.1	2.4	0.9	2.5	0.7	8.7	2.7	3.2	1.2	0.91	0.68	11.4
Termeil Lake	42	2.4	1.3	4.6	1.1	6.1	0.3	15.4	5.7	12.1	2.1	1.86	0.17	76.8
Meroo Lake	12	1.8	1.6	2.9	1.4	3.1	1.2	5.3	2.5	1.5	0.6	0.44	1.10	6.2
Willinga Lake	39	1.2	0.5	2.5	0.5	2.7	0.5	4.7	1.8	1.7	0.9	0.27	0.50	7.7
Congo Creek	29	4.2	3.2	6.6	2.9	6.8	2.8	11.7	6.1	6.4	1.0	1.20	2.71	37.2
Lake Brou	12	1.8	1.2	2.1	1.1	2.3	0.9	4.0	2.0	1.1	0.6	0.32	0.66	4.5
Corunna Lake	50	3.1	1.8	9.0	1.7	13.1	0.9	17.3	6.2	5.9	1.0	0.84	0.40	22.4
Tilba Tilba Lake	10	59.0	33.5	82.6	30.8	106.8	22.7	206.7	80.9	69.6	0.9	22.02	22.50	209.9
Baragoot Lake	12	4.6	4.2	15.3	3.3	16.1	2.3	27.0	10.0	9.3	0.9	2.70	1.87	29.7
Cuttagee Lake	26	1.7	1.1	2.8	1.0	3.1	0.6	3.5	1.9	1.0	0.5	0.20	0.40	4.0
Merrica River	5	1.7	1.6	1.7	1.5	1.7	1.1	1.8	1.6	0.3	0.2	0.15	1.00	1.9

Chlorophyll a summary statistics for river class

Estuary	Valid N	Median 2	5th %ile 7	5th %ile 20	0th %ile 80	th %ile	5th %ile 9	5th %ile	Mean	Std Dev	C۷	Std Err N	linimum M	aximum								
Rivers All (averages)	4192	3.0	1.8	6.4	1.6	7.9	1.0	20.0	6.0	8.7	1.1	0.88	0.01	866.2								
Reference Rivers (pooled)	393	1.5	0.9	2.2	0.7	2.4	0.3	4.2	1.8	1.3	0.7	0.06	0.02	8.4								
Reference UPPER	40	1.7	0.9	3.1	0.8	3.4	0.2	5.9	2.3	2.1	0.9	0.33	0.09	8.4								
Reference MID	109	1.5	0.7	2.3	0.6	2.9	0.3	5.2	1.8	1.4	0.8	0.14	0.02	6.8			Summa	ry statistic	s for rive	er zones	5	
Reference LOWER	243	1.5	1.0	2.1	0.9	2.3	0.4	3.6	1.6	1.0	0.6	0.06	0.10	5.2			edian				ean	
															Lower	Mid		Average				
Tweed River	180	2.1	1.1	3.4	0.9	4.3	0.4	8.9	3.0	3.2	1.1	0.24	0.06	23.0	1.1	2.8	2.1	2.0	1.3	3.4	3.4	2.7
Brunswick River	574	4.0	2.0	9.0	1.7	12.0	0.6	30.0	9.2	16.9	1.8	0.71	0.11	178.0	4.0	2.0	5.7	3.9	5.2	4.7	10.7	6.9
Richmond River	122	2.7	1.3	5.0	1.1	5.9	0.3	12.2	4.6	7.6	1.6	0.69	0.20	59.0	1.4	2.0	3.8	2.4	1.7	3.0	6.9	3.9
Evans River	12	10.3	8.3	20.2	7.8	22.0	7.3	64.3	21.1	28.2	1.3	8.14	6.96	107.9	8.1	12.4	16.2	12.2	8.1	13.4	30.6	17.3
Clarence River	168	2.1	1.1	5.5	1.0	9.0	0.5	35.0	7.0	11.7	1.7	0.90	0.15	65.0	1.0	1.5	5.0	2.5	1.0	1.5	10.8	4.4
Sandon River	111	1.0	0.5	1.8	0.4	1.9	0.3	2.7	1.2	0.8	0.7	0.08	0.09	4.2	1.5	1.0	0.3	0.9	1.4	1.1	0.4	1.0
Bellinger River	93	1.4	0.9	2.1	0.7	2.2	0.3	5.2	1.8	1.6	0.9	0.16	0.02	8.4	1.0	1.3	2.3	1.5	1.1	1.5	3.2	1.9
Nambucca River	92	1.6	0.8	2.4	0.8	2.9	0.2	5.1	1.9	1.5	0.8	0.16	0.02	7.8	0.9	1.6	2.4	1.7	1.0	1.9	3.1	2.0
Macleay River	84	1.3	0.9	1.9	0.8	2.2	0.4	4.8	1.8	1.4	0.8	0.16	0.14	7.2	0.9	1.5	2.1	1.5	1.1	1.7	2.9	1.9
Hastings River	644	2.5	1.6	3.7	1.4	4.0	0.6	7.0	3.0	2.2	0.7	0.09	0.09	20.4	2.5	2.8	2.6	2.6	2.7	3.5	3.0	3.1
Manning River	829	2.6	1.4	5.4	1.2	6.3	0.5	15.6	4.7	7.0	1.5	0.24	0.01	122.0	2.9	2.5	3.0	2.8	3.5	4.2	5.7	4.5
Karuah River	16	1.9	1.0	4.7	0.9	7.1	0.4	20.4	4.8	6.7	1.4	1.66	0.39	20.4		2.3	1.5	1.9		2.3	5.1	3.7
Cooks River	829	13.6	4.7	50.6	3.5	68.5	1.1	180.0	47.1	89.0	1.9	3.09	0.10	866.2	2.0	0.8	13.9	5.6	4.2	0.8	47.3	17.4
Minnamurra River	74	1.2	0.1	4.6	0.1	6.4	0.1	38.1	6.8	15.9	2.3	1.85	0.01	103.6	0.2	1.3	2.5	1.3	3.2	8.7	9.4	7.1
Crooked River	80	0.7	0.1	2.2	0.1	2.6	0.1	5.6	1.7	3.3	1.9	0.37	0.01	25.0	0.9	0.1	1.2	0.7	1.9	0.2	2.3	1.5
Shoalhaven River	61	2.2	1.5	3.0	1.4	3.2	0.9	5.9	2.7	2.0	0.7	0.25	0.51	12.8	2.1	2.5	1.0	1.9	2.1	3.2	1.2	2.2
Clyde River	67	1.9	1.5	2.5	1.5	2.7	1.2	4.5	2.2	1.1	0.5	0.13	0.99	6.4	1.7	3.3		2.5	1.9	3.4		2.6
Tomaga River	12	1.6	1.2	2.5	1.2	2.8	1.0	3.1	1.9	0.8	0.4	0.24	0.94	3.2	1.6			1.6	1.9			1.9
Candlagan Creek	11	4.6	3.5	5.8	3.0	6.4	2.1	8.0	4.8	2.1	0.4	0.63	1.45	8.8	4.6	4.7		4.7	4.8	4.7		4.7
Moruya River	47	2.1	1.4	2.7	1.3	2.9	1.0	3.9	2.2	1.0	0.5	0.14	0.72	4.9	2.1	2.4	1.2	1.9	2.2	2.4	1.5	2.0
Tuross River	46	1.4	0.6	3.1	0.5	3.4	0.2	5.6	2.0	1.8	0.9	0.26	0.10	6.8	1.1	4.1		2.6	1.5	3.8		2.7
Bega River	12	4.9	4.2	5.7	4.1	5.8	3.6	7.4	5.1	1.4	0.3	0.41	3.59	8.8	4.9			4.9	5.1			5.1
Pambula River	22	1.6	1.4	2.2	1.2	2.3	1.0	2.9	1.8	0.6	0.3	0.13	0.89	3.0	1.6			1.6	1.8			1.8
Towamba River	6	1.7	1.1	2.5	1.0	2.7	0.5	3.3	1.8	1.1	0.6	0.47	0.39	3.6	1.7			1.7	1.8			1.8

Summary statistics for turbidity

Turbidity summary statistics for lake class

Estuary	Valid N	Median 25	th %ile 7	5th %ile 2	0th %ile 8	0th %ile	5th %ile 9	5th %ile	Mean	Std Dev	C۷	Std Err N	linimum	Maximum
Lakes All (averages)	650	6.4	3.3	9.5	2.9	10.4	2.0	17.6	7.4	6.0	0.7	1.2	0.30	72.9
Reference Lakes (pooled)	182	2.6	1.3	4.7	1.2	5.7	0.8	10.6	3.6	3.3	0.9	0.2	0.5	17.0
Wallis Lake	123	3.0	1.9	6.5	1.5	7.0	0.5	20.9	5.6	6.7	1.2	0.6	0.3	32.6
Smiths Lake	31	2.1	1.5	2.7	1.4	3.1	1.1	8.5	2.8	2.4	0.9	0.4	1.0	10.0
Myall River	36	3.3	2.5	5.6	2.4	8.4	0.7	11.3	4.6	3.8	0.8	0.6	0.6	15.9
Tuggerah Lake	71	7.9	5.1	13.7	4.6	15.0	3.4	31.8	11.1	9.9	0.9	1.2	2.0	59.7
Wamberal Lagoon	18	6.9	5.1	9.1	4.8	10.8	2.3	37.3	12.1	16.6	1.4	3.9	2.3	72.9
Parramatta River	16	8.4	7.5	11.3	6.6	11.9	5.6	28.7	10.9	7.3	0.7	1.8	5.1	29.0
Georges River	76	19.5	6.3	36.8	4.6	39.3	1.9	48.9	22.3	17.8	0.8	2.0	0.9	68.5
Botany Bay	13	35.4	7.8	43.3	6.5	45.3	5.1	48.2	28.9	17.4	0.6	4.8	4.8	48.5
Lake Illawarra	35	3.6	2.3	5.5	2.1	5.9	1.3	6.9	4.4	4.2	1.0	0.7	0.6	26.4
St Georges Basin	15	1.2	1.1	1.6	1.1	1.7	1.0	2.2	1.4	0.5	0.3	0.1	0.9	2.7
Swan Lake	11	1.4	1.0	1.6	0.9	1.6	0.8	2.0	1.3	0.5	0.4	0.1	0.7	2.4
Lake Conjola	18	1.0	0.8	1.3	0.8	1.3	0.7	1.8	1.1	0.4	0.3	0.1	0.7	2.2
Burrill Lake	50	1.7	1.3	2.1	1.2	2.4	1.0	3.4	1.8	0.8	0.4	0.1	0.8	4.0
Durras Lake	48	6.1	4.4	8.6	3.8	9.3	2.3	12.0	6.7	3.3	0.5	0.5	1.8	17.0
Coila Lake	47	2.1	1.6	2.8	1.5	3.0	1.0	3.9	2.3	1.3	0.5	0.2	0.5	8.5
Wallaga Lake	18	2.6	1.8	3.6	1.8	3.6	1.6	29.3	5.5	8.7	1.6	2.1	1.5	29.4
Wallagoot Lake	18	1.2	0.8	1.5	0.7	1.5	0.6	3.4	1.4	1.0	0.7	0.2	0.6	3.5
Nadgee Lake	6	7.8	6.2	13.4	5.7	15.3	5.3	16.1	9.7	4.9	0.5	2.0	5.2	16.4

Turbidity summary statistics for lagoon class

Estuary	Valid N	Median	25th %ile	75th %ile	20th %ile	80th %ile	5th %ile 9	95th %ile	Mean	Std Dev	C۷	Std Err	Minimum	Maximum
Lagoons All (averages)	413	3.4	2.5	6.6	2.4	8.3	1.8	17.9	6.2	7.0	0.8	1.7	0.47	205.0
Reference Lagoons (pooled)	94	1.7	1.0	2.8	0.9	3.3	0.7	4.5	2.4	3.8	1.6	0.4	0.5	36.1
Khappinghat Creek	42	5.3	3.1	9.3	3.0	21.5	2.3	46.4	11.9	15.3	1.3	2.4	1.1	63.2
Avoca Lake	33	4.8	3.1	8.0	2.9	8.8	2.2	15.4	6.3	4.8	0.8	0.8	2.1	23.3
Manly Lagoon	32	4.2	3.6	5.7	3.2	5.8	2.2	7.0	4.5	1.5	0.3	0.3	1.7	7.7
Wattamolla Creek	32	1.1	0.8	1.4	0.8	1.7	0.7	2.2	1.2	0.5	0.4	0.1	0.5	2.4
Bellambi Lake	6	1.9	1.8	2.2	1.8	2.3	1.6	3.1	2.2	0.6	0.3	0.3	1.6	3.4
Towradgi Creek	32	3.4	3.1	6.6	3.0	7.3	1.8	20.2	6.0	6.1	1.0	1.1	1.6	26.1
Fairy Creek	41	6.0	4.9	7.8	4.8	8.3	3.9	10.5	6.6	2.6	0.4	0.4	2.6	16.2
Mollymook Creek	6	4.3	2.6	8.3	2.5	9.1	2.2	11.0	5.7	4.0	0.7	1.6	4.1	58.3
Tabourie Lake	11	3.9	2.8	4.5	2.7	4.5	1.8	6.2	3.8	1.6	0.4	0.5	0.7	11.4
Termeil Lake	42	1.8	1.2	3.1	1.1	4.9	0.7	10.5	4.4	8.3	1.9	1.3	0.5	50.0
Meroo Lake	12	1.5	1.3	1.8	1.3	1.8	0.9	2.1	1.5	0.4	0.3	0.1	0.9	2.4
Congo Creek	29	1.5	1.3	2.2	1.2	2.3	0.9	2.9	1.9	1.5	0.8	0.3	0.8	9.2
Lake Brou	12	2.1	1.6	2.9	1.6	3.1	1.2	18.2	4.9	9.8	2.0	2.8	0.9	36.1
Corunna Lake	32	3.4	2.8	5.1	2.7	8.9	1.6	10.8	5.7	7.1	1.2	1.2	1.4	40.9
Tilba Tilba Lake	12	9.9	7.9	43.3	7.2	50.8	5.2	144.7	39.0	58.9	1.5	17.0	5.1	205.0
Baragoot Lake	12	2.8	1.6	3.6	1.4	3.6	1.2	4.1	2.6	1.1	0.4	0.3	1.1	4.2
Cuttagee Lake	22	1.9	1.0	2.6	0.9	3.6	0.5	4.6	2.2	1.4	0.6	0.3	0.5	5.0
Merrica River	5	0.9	0.9	0.9	0.8	1.4	0.6	3.0	1.4	1.2	0.9	0.5	0.6	3.5

Turbidity summary statistics for river class

Estuary	Valid N	Median 2	5th %ile 7	5th %ile 20)th %ile 80	th %ile	5th %ile 95	ith %ile	Mean	Std Dev	C۷	Std Err M	linimum M	aximum								
Rivers All (averages)	241	5.9	3.5	9.5	3.3	10.8	2.0	15.7	7.2	5.1	0.5	1.4	0.30	89.2								
Reference Rivers (pooled)	275	4.0	1.7	7.5	1.4	8.2	1.0	18.0	5.9	7.8	1.3	0.5	0.3	90.0								
Reference UPPER	39	10.0	5.8	13.0	5.1	13.7	1.9	26.8	11.5	8.8	0.8	1.4	1.0	40.9								
Reference MID	92	4.5	2.0	7.0	1.8	8.0	1.0	16.0	2.3	4.8	2.1	0.5	0.7	23.0			Summa	ry statistic	s for rive	r zones		
Reference LOWER	143	3.0	1.4	5.0	1.2	5.0	1.0	13.0	4.5	2.1	0.5	0.2	0.3	90.0		Ме	dian			Me	ean	
															Lower	Mid	Upper	Average	Lower	Mid	Upper	Average
Brunswick River	14	11.0	9.2	19.2	8.9	21.2	3.8	34.0	14.5	9.8	0.7	2.6	3.6	35.5	3.8	9.3	13.4	8.8	3.8	9.3	18.6	10.5
Evans River	12	16.0	10.9	25.9	10.8	31.8	7.2	35.4	18.9	10.9	0.6	3.1	6.2	37.1	9.3	12.3	28.6	16.7	9.3	12.3	26.5	16.0
Sandon River	15	5.7	2.1	12.8	1.4	13.3	0.7	28.0	9.4	10.8	1.1	2.8	0.7	40.9		1.0	10.8	5.9		1.3	13.4	7.4
Hastings River	18	9.4	4.7	13.9	4.2	15.1	3.2	20.6	10.2	6.2	0.6	1.5	2.7	22.7		3.4	10.9	7.2		3.6	12.8	8.2
Karuah River	16	24.8	7.2	41.8	6.4	51.6	2.6	74.1	29.4	26.5	0.9	6.6	2.2	89.2		2.5	34.3	18.4		2.5	33.2	17.8
Minnamurra River	14	5.4	4.7	6.8	4.6	7.0	2.1	12.4	6.4	4.7	0.7	1.2	1.7	21.5	1.7	2.4	5.7	3.2	1.7	2.4	7.1	3.7
Crooked River	11	4.3	3.5	8.7	3.4	10.2	1.9	18.8	7.3	6.8	0.9	2.0	1.7	25.1	4.3			4.3	7.3			7.3
Shoalhaven River	26	1.8	1.3	2.2	1.2	2.2	0.9	2.4	1.7	0.5	0.3	0.1	0.9	2.6	2.2	1.7		2.0	2.2	1.7		2.0
Clyde River	32	1.5	1.1	1.7	1.1	1.7	0.9	1.9	1.4	0.4	0.3	0.1	0.7	2.3	1.3	1.7		1.5	1.3	1.7		1.5
Tomaga River	12	1.9	1.4	2.9	1.3	2.9	1.0	3.3	2.1	0.9	0.4	0.2	0.8	3.6	1.9			1.9	2.1			2.1
Candlagan Creek	11	2.6	2.3	3.5	2.1	3.6	1.4	4.0	2.8	0.9	0.3	0.3	1.0	4.1	2.9	2.3		2.6	2.9	2.3		2.6
Moruya River	12	1.4	1.2	1.5	1.1	1.5	0.9	1.7	1.3	0.3	0.2	0.1	0.9	1.8	1.4	1.3		1.4	1.3	1.3		1.3
Tuross River	12	2.7	2.0	3.4	2.0	3.4	1.8	3.8	2.7	0.8	0.3	0.2	1.7	3.8	3.5	2.2		2.9	3.5	2.4		3.0
Bega River	12	3.7	2.8	4.2	2.5	4.3	1.8	5.7	3.6	1.3	0.4	0.4	1.7	6.0	3.7			3.7	3.6			3.6
Pambula River	18	1.8	1.4	2.5	1.4	2.6	1.2	3.1	2.0	0.7	0.3	0.2	1.0	3.3	1.8			1.8	2.0			2.0
Towamba River	6	0.9	0.8	1.1	0.7	1.1	0.4	1.4	0.9	0.4	0.4	0.2	0.3	1.5	0.9			0.9	0.9			0.9

Data collection protocols

The field protocols used are based on those developed for the indicators adopted under the National Land and Water Resources Audit. Those protocols have then been adapted to the needs and designs of the Estuary MER program sampling. This Appendix provides the text from relevant sections of the national indicator protocol along with pointers to the Sections amended, followed by the amended procedures used in the MER program. Department names, website addresses, guideline versions and references in the NLWRA protocol have been updated to reflect their status at September 2011.

Water clarity

National Protocol: <u>www.lwa.gov.au/files/products/national-land-and-water-resources-audit/pn21553/pn21553.pdf</u>.

Matter for target:

Estuarine, coastal and marine habitat integrity.

Indicator heading:

Estuarine, coastal and marine habitat condition.

Indicator name:

Water clarity.

This document presents the recommended monitoring guidelines for collecting, collating and reporting information on water clarity for national, state/territory and regional application.

1. Definition

This indicator documents the water clarity of estuarine, coastal or marine waters.

AIM: To determine annual median turbidity levels and Secchi depth in estuarine or coastal waters and compare with local guidelines.

INDICATOR 1: Turbidity of a waterbody.

INDICATOR 2: Secchi depth of a waterbody.

2. Rationale

Turbidity is a measure of water clarity or murkiness. It is an optical property that expresses the degree to which light is scattered and absorbed by molecules and particles. Turbidity results from soluble coloured organic compounds and suspended particulate matter in the water column. Suspended particulate matter may include clay and silt (e.g. suspended [inorganic] sediment), and [organic] detritus and organisms" (OzCoast and OzEstuaries, www.ozcoasts.gov.au/indicators/turbidity.jsp).

"Measurements of turbidity are very useful when the extent of transmission of light through water is the information sought, as in the case of estimation of the light available to photosynthetic organisms. Another strong point in favour of turbidity is that field measurement is straightforward and can be performed rapidly by monitoring teams. Turbidity is a measurement included in Waterwatch programs nationally. Because of the simplicity of the technique and its widespread use, large volumes of turbidity data are becoming available for national evaluation and interpretation. The turbidity of Australian coastal waters is an important issue in relation to benthic productivity, since many highly valued seagrass and algal bed communities have evolved in, and depend on, conditions of high light penetration (low turbidity)" (Ward *et al.* 1998).

Increased turbidity reduces the amount of light available for photosynthesis which may decrease the phytoplankton biomass and therefore result in increased dissolved nutrients in the water column.

"Turbidity caused by suspended sediment can smother benthic organisms and habitats, and cause mechanical and abrasive impairment to the gills of fish and crustaceans (ANZECC/ARMCANZ, 2000b). Suspended sediment also transports contaminants (particulate nutrients, metals and other potential toxicants) (ANZECC/ARMCANZ 2000b), promotes the growth of pathogens and waterborne diseases, makes marine pests difficult to detect (Neil 2002) and can lead to dissolved oxygen depletion in the water column if it is caused by particulate organic matter. Overall, unnaturally high turbidity levels can lead to a reduction in the production and diversity of species." (OzCoast and OzEstuaries, www.ozcoasts.gov.au/indicators/turbidity.jsp).

For further information on turbidity and fine sediment loads including a detailed explanation of what turbidity is, what causes turbidity, the significance of turbidity, coastal systems susceptible to turbidity, the impacts of fine sediment loads on coastal waterways and the biophysical parameters that may indicate that a waterway is receiving excess sediment loads, see the OzCoast and OzEstuaries website (www.ozcoasts.gov.au/indicators/turbidity.jsp).

Secchi depth is a measure of water clarity, and is measured in-situ using a Secchi disc, as described in Australian Standard AS 3550.7-1993.

3. Monitoring methodology

Several different methods are available for measuring water clarity, ie from boats, shore or remote sensing. The methods used will depend on factors such as location and resources available but should be consistent with national/state guidelines.

The methodology below is currently the best identified for the majority of people. Local experts as well as the laboratory being used to perform the analysis should be consulted before conducting any monitoring program, particularly with regard to aspects of the quality control and quality assurance of data collected.

3.1 Monitoring locations (see MER Amendment)

Turbidity and Secchi depth measurements should be taken from the mid estuary and, where possible, from the upper and lower reaches of an estuary. In estuaries where little or no monitoring has been done before, initial samples should ideally be taken along the length of the estuary at intervals of 10% of the total length (but not closer than every 3 km). This will allow the 'worst' areas to be identified and continually monitored in the future. Areas near sediment point source inputs should also be monitored. A similar logic should be used to select sites within coastal waters.

3.2 Monitoring frequency required (see MER Amendment)

The direct monitoring of turbidity and Secchi depth needs to be conducted on a monthly basis on the falling tide. Turbidity can be monitored continuously or during/after specific events. Generally, turbidity measurements are most useful when continuously monitored using moored, continuously recording sensors.

A profile of turbidity through different depths should be monitored to examine any stratification effects (ie lack of mixing).

3.3 Data measurement method

Use of the Secchi disc for water clarity measurements

The Secchi disc value is used as a semi-quantitative visual index of depth of light penetration into a waterbody. The black and white disc is lowered into the water column and the distance below the water surface where the black/white interface disappears is the Secchi disc depth.

Equipment required:

- 300 mm diameter plastic disc painted with quadrants alternating in flat black and flat white waterproof paints
- A length of non-stretch rope (eg surveyor's Kinlon poly-chain) with measurement graduations
- 3 kg weight.

Site procedures from boat:

- 1. Prepare field recording sheets.
- 2. Locate the site using a Global Positioning System.
- 3. Remove sunglasses or tinted eyewear.
- 4. Lower the weighted Secchi disc into the water on the sunny side of the boat and ensure the disc lowers vertically into the water column.
- 5. Record the depth at which the black/white interface disappears as D1. This depth is measured from the top of the disc to the water surface. Measurement precision is half the distance between graduations on the rope or line.
- 6. Raise the disc slowly and record the depth at which the black/white interface becomes visible as D2.
- 7. The average of these two depths is the limit of visibility of the Secchi depth.
- 8. Record on the field recording sheet.

Important notes:

- Environment
 - Light environment: shade can either enhance or limit the perception of the
 - o black/white quadrants. For consistency both spatially and temporally, Secchi disc
 - o depth is taken away from shade.
 - Angle of the sun: observations should be taken between two hours after sunrise and
 - two hours before sunset.
 - Water surface consistency: the consistency of the water surface, which can be
 - o affected by wind chop, ground swell, surface slicks and floating matter, can affect the
 - o perception of the black/white interface. The conditions of the day must be recorded at
 - o each site.
- Observer
 - Eyesight: the perception of the black/white interface is affected by the visual acuity of the observer. All observations should be made with corrected vision.
 - Sunglasses: darkened or tinted glasses can affect the perception of the black/white interface and must be removed before observation.
 - Observer accuracy: perception of the black/white interface is subjective and varies between observers.

Calibration of tether:

The Secchi disc tether is checked for graduation accuracy annually using a measuring tape.

Calibration of disc:

The black quadrants of the disc are repainted annually.

Use of a turbidity probe for water clarity measurements

A light beam is shone through a water sample and the light scattered off the particles present is measured by a photodiode at 90 degrees to the light source.

Equipment required:

Turbidity probe mounted in a sonde, an instrument designed to be lowered through the water column. Alternatively, obtain water from the specified depths and use a field turbidity meter.

Procedures (middle of estuary, from boat):

- 1. Prepare field recording sheets.
- 2. Calibrate probe prior to sampling.

Site procedures: (see MER Amendment)

- 3. Locate the site using a Global Positioning System.
- 4. While in a slow forward motion, cut the engine to prevent fouling.
- 5. Turn the meter on and place the sonde in the water.
- 6. Allow the probes to stabilise for a minimum of 90 seconds for the initial site reading.
- 7. Record information 0.2 m below the surface (to reduce the impact of surface slicks) on the field recording sheet.
- 8. Save the data in the hand-held data logger.
- 9. Repeat at 2 m intervals until the bottom is reached allowing a minimum of 30 seconds for the probes to stabilise at each depth. After 30 seconds, proof stability is attained by readings remaining constant for 10 seconds. If values fluctuate, continue measuring in 10 second increments until stability occurs.
- 10. Between sites, fill the PVC tube holding the sonde with water from the previous site to maintain probe stability.

Shore-based procedures: (not used for MER)

- 1. Prepare field recording sheets.
- 2. Calibrate probe prior to sampling.

Site procedures:

- 3. Locate the site using a Global Positioning System.
- 4. Rinse a clean 20 L plastic bucket three times and fill with sample water.
- 5. Place the sonde in the bucket and allow to stabilise.
- 6. Before taking measurements, ensure the water sample is well mixed by continuously stirring the bucket with the sonde.
- 7. Record information on the field recording sheet.
- 8. Save the data in the hand-held data logger.
- 9. Between sites, fill the PVC sonde holding tube with water from the previous site to maintain probe stability.

Calibration of a turbidity probe (before going out into the field): (see MER Amendment)

The turbidity probe must be calibrated weekly.

- 1. Remove the sensor guard and check the turbidity sensor for damage. Pay particular attention to the wiper. If the cloth for the wiper is damaged, replace the wiper.
- 2. Prepare and label six calibration cups with formazin turbidity standards as follows (these standards are chosen based on the range of turbidity of the water sampled):
 - o 0 NTU rinse
 - o 0 NTU standard
 - o 400 NTU rinse

- o 400 NTU standard
- o 800 NTU rinse
- 800 NTU standard.
- 3. Turn the meter on and choose the 3-point calibration from the turbidity calibration menu (some probes only use a 2-point calibration method, 0 NTU and another 'higher' standard).
- 4. Rinse the turbidity sensor with distilled water and then dry and immerse the sensor in the 0 NTU rinse.
- 5. Dry again and place the sensor in the 0 NTU standard.
- 6. Engage the turbidity wiper and after it has stopped calibrate the first point. Record the pre-calibration value for the first point in the turbidity section of the Individual Sensor Calibration History Documentation.
- 7. Rinse the sensor with distilled water and repeat steps 1–6 using the 400 NTU and 800 NTU standards taking care to invert each standard to re-suspend the formazin in solution. Do not shake as air bubbles affect the sensor's accuracy.

Post calibration: go into run mode for meter and test the accuracy of the calibration. To do this:

- 1. Rinse the turbidity sensor with distilled water and then dry and immerse the sensor in the 0 NTU rinse.
- 2. Dry again and place the sensor in the 0 NTU standard.
- 3. Engage the turbidity wiper and after it has stopped, record the post-calibration value in the turbidity section of the Individual Sensor Calibration History Documentation.
- 4. Repeat steps 1 and 2 with the 400 NTU Standard and 800 NTU standard

The post calibration values should lie within the following acceptance limits:

- 0 NTU = +/- 0.1 NTU
- 200 NTU = +/- 10 NTU
- 800 NTU = +/- 40 NTU.

If the sensor is reading outside these limits, it must be recalibrated. If the sensor cannot be calibrated to read within these limits, it must be replaced/serviced. If only the lower standard (0 NTU) is outside the limit, a one-point calibration can be completed to bring the reading within the prescribed limits. If this fails, the sensor must be replaced/serviced.

3.4 Data collation / calculation method (see MER Technical Report)

Data for a specific site should be collated over the study period and the median value calculated and compared against the relevant guidelines.

3.5 Data storage and management

Data should be stored by state/territory agencies and by the collectors (if different) of the data. If possible, the public should have access to the data (and report summaries) through a website hosted by state/territory government.

3.6 Data analysis and interpretation (see MER Technical Report)

When examining 'ambient' turbidity and Secchi depth, data from at least one year should be used in the analysis. Median turbidity and Secchi depth values should be compared with the relevant water quality guidelines. 'National' default trigger values have been listed in the 'Water Quality Guidelines' for coastal waterways in different geographic regions (ANZECC/ARMCANZ 2000a); these trigger values are superseded in Queensland by the 'Queensland Water Quality Guidelines' (DERM 2009b). Local guidelines (which supersede both national and state/territory ones) may be available for some estuaries.

Excerpts from the guidelines for State of the Environment reporting (Ward et al. 1998):

Turbidity is an operationally determined parameter that is related to the 'murkiness' of water. Depending on the instrument used, it is quantified by light either scattered from, or absorbed by, suspended particles and colloidal material, with perhaps minor contributions also from coloured dissolved organic matter (e.g. humic substances). Reasons for measuring turbidity differ slightly from those for other water quality indicators. Although increases in turbidity are often related to deterioration in water quality, it does not follow that the severity of the contamination can be assessed. For example, severe clouding of water by clay minerals and humic substances from soil disturbance may be unsightly, but not toxic to fish or other aquatic creatures. However, a lesser loading of metal-rich particles from mine tailings discharge, or high-clarity waters loaded with aluminium arising from run-off from acid sulphate soils, can devastate biota.

High turbidity values are the data of interest, and change in waters from low to high values. A problem encountered is one shared with other water quality indicators – the need for national baseline data that make it possible to distinguish values and patterns that depart from the norm and may indicate environmental problems or anomalies.

Shifts in long-term patterns (in space and time) of turbidity in estuarine and coastal waters are of concern given the unique values of Australia's seagrass beds and algal assemblages, but these can only be determined by evaluation against a baseline of data. In general terms, a tendency to increasing turbidity, for longer periods or over greater areas, would usually be considered detrimental.

High turbidity levels can be the result of tidal current resuspending sediments, inputs from catchment/shoreline erosion, dredging, dissolved organic matter and/or algal blooms. Further information on the interpretation of turbidity data can be found at the OzCoast and OzEstuaries website (<u>www.ozcoasts.gov.au/indicators/turbidity.jsp</u>).

The Department of Sustainaibility, Environment, Water, Population and Communities (Australian Government) provides water quality targets online for turbidity (<u>www.environment.gov.au/water/publications/quality/targets-online/index.php</u>).

3.7 Reliability, validity and quality assurance

Quality assurance and control measures are important to minimise avoidable errors in the data and thus give more confidence in the data collected and conclusions made. Individuals collecting the data must have had adequate training in sample collection. Instrument calibration and/or laboratory quality assurance should be regularly examined and recorded.

3.8 Metadata

Metadata documentation should be completed for all datasets (see Appendix A). The metadata statement should be consistent with current ANZLIC standards, which now comply with ISO 19115.

See the following web site for the Metadata Profile: <u>www.osdm.gov.au/ANZLIC_MetadataProfile_v1-1.pdf?ID=303</u>.

For the Metadata Guidelines see: <u>www.osdm.gov.au/ANZLIC_MetadataProfileGuidelines_v1-0.pdf?ID=397</u>.

8. Further information

ANZECC/ARMCANZ. 2000a, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_for_fresh_and_marine water_quality.

ANZECC/ARMCANZ. 2000b, Australian Guidelines for Water Quality Monitoring and Reporting. www.mincos.gov.au/publications/australian_guidelines_for_water_guality_monitoring_and_reporting.

DERM 2009a, *Monitoring and sampling manual 2009*, Version 2, ISBN 978-0-9806986-1-9, Department of Environment and Resource Management, Brisbane, 228 pp. www.derm.gld.gov.au/environmental_management/water/pdf/monitoring-man-2009-v2.pdf.

DERM 2009b, *Queensland water quality guidelines,* Version 2, ISBN 978-0-9806986-0-2, Department of Environment and Resource Management, Brisbane, 167 pp. www.derm.gld.gov.au/environmental management/water/pdf/wg-guidelines2010.pdf.

Monbet, Y. 1992, Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries. *Estuaries* 15: 563-571.

Neil, K.M. 2002, The detection, response and challenges of a pest detection. *Proceedings of the annual conference of the Australian Marine Sciences Association*. 10-12 July 2002, Fremantle WA.

NLWRA (National Land and Water Resources Audit). 2002, *Australian Catchment, River and Estuary Assessment 2002.* Volume 1, 192 pp. National Land and Water Resources Audit, Commonwealth of Australia, Canberra.

OzCoasts. 2007. Web site. www.ozcoasts.gov.au/index.jsp.

Ward, T., Butler, E. and Hill, B. 1998, *Environmental indicators for national state of the environment reporting – Estuaries and the sea*. Australia: State of the Environment (Environmental Indicator Reports). 81 pp. Department of the Environment; Canberra. www.environment.gov.au/soe/publications/indicators/pubs/estuaries.pdf.

Waterwatch Australia Steering Committee. 2002, *Waterwatch Australia National Technical Manual. Module 4 – physical and chemical parameters*. Environment Australia, Canberra. www.waterwatch.org.au/publications/module4/pubs/module4.pdf.

9. Glossary

Baseline data – Information collected to form a reference set for comparison of a second set of data collected at a later time; used to interpret changes over time usually after some condition has changed.

Benthic – On the bed or bottom of a body of water or in the bottom sediments.

Biomass – The total weight of all living organisms in a biological community or of a particular species/group.

In-situ – Latin term for 'in the original place'.

Spatial – Pertaining to space or distance.

Temporal – Pertaining to time.

Appendix A: Metadata statement

Monitoring program	The name of the monitoring program
Custodian of data/Contact	The business name and address/contact details of the
	custodial organisation or responsible party
Summary of program	A brief narrative summary of the program
Geographic extent	The ordinary name(s) of the locations where the data
	was collected (ie study area)
Indicators monitored	List of all indicators monitored
Method of data collection	Summary of the methods used to collect the data
Past/future sampling	Description of when sampling started, how often it
	occurred, when it will finish
Quality assurance	Description of the quality control/assurance procedures
	used
Data access	1) Location: Where and how the data is stored. If it can
	be accessed
	2) Format in which dataset is stored and available
	remotely (ie from a website)
	3) Any restriction or legal prerequisites that may apply to
	access and use the data
Other comments	Any other comments
Information source(s)	Where information on the program can be found (eg
	reports, literature, websites)
Date metadata created	Date when the metadata record was created

MER AMENDMENTS

3.1 Monitoring locations

The spatial scale of interest is the entire central basin of lakes and lagoons, and the assumed chlorophyll maximum that occurs in the mid-upper sections of river estuaries. To facilitate representative spatial coverage, estuaries were divided into zones. For creeks and lagoons, zones were assigned on charts before sampling commenced. A zone was an area 500 to 700 m diameter in which sampling takes place. Sufficient zones (up to three) were allocated to the central basin of each estuary so that the majority of the estuary is represented. This may mean small systems have only one zone. In MER Year 2 (2008), only the middle estuary was sampled in river estuaries. The middle estuary was defined as having a salinity of 8 - 15 ppt, but due to the short-term temporal variability in salinity, the long-term location was defined as being in the vicinity of the upper limit of mangrove trees and this is where sampling was concentrated. Two zones were placed in the river in this vicinity. This procedure for rivers will be replaced by a longitudinal transect with continuously logged data from mid to upper estuary from MER Year 3 (2009) onwards.

3.2 Monitoring frequency required

Sampling windows across NSW are:

- NR CMA: mid September to end December
- HCR, HN and SM CMA: mid September to end March
- SR CMA: mid November to end March.

Spacing of sampling occasions was determined by a combination of logistics and the desire to fit six sampling occasions within the defined window. Southern Rivers CMA (MER Year 2 - 2008) estuaries were sampled at intervals of approximately three weeks, with all estuaries sampled within the same week.

Variables

The MER indicators that OEH sampled were chlorophyll and clarity (turbidity and secchi), supported by salinity data.

3.3 Data measurement method

Site Procedures

Field data sheets which recorded the entrance state, riparian condition, observations about macroalgae and other submerged aquatic vegetation, weather and any other relevant observations were also filled out for each estuary.

Travel to the upwind boundary of each zone in the estuary. Record secchi depth by lowering until not visible and noting depth, then lower some more and raise until visible, noting depth when visible. Secchi depth is the average of these two. The water quality probe, which recorded chlorophyll (fluorometric), turbidity, salinity, temperature, depth and time, is then fixed in the water at a depth of approximately 400 mm using a special cradle attached to the boat's gunwhale. Record the time at which the transect commences. The probe was set to log readings every second and the boat allowed to drift for five minutes. At the end of the transect, note the time that the transect ended. If there is insufficient wind, the boat was rowed or paddled for five minutes. This procedure captures data for a transect through the zone and allows the calculation of an average (or median) turbidity for the zone.

At the end of the transect, repeat secchi measurement and then slowly lower the sonde to the bottom, recording a profile of turbidity through the water column.

Note: OEH secchi disc is made from steel or thick aluminium to eliminate the need for a separate weight and is tethered using a fibreglass measuring tape to improve accuracy of measurement of depth.

Instrument Calibration

The YSI Model 6820V2-S multiprobes used for the MER sampling were fitted with a fluorometric chlorophyll probe and a turbidity probe. Prior to each trip, turbidity is calibrated to nil and 50 ntu using milli-q filtered water and formazin standard respectively. Salinity is also calibrated to a seawater standard prior to every trip.

Data Analysis

Using the recorded start and end times, data for the transects in each zone were extracted from the data files stored by the YSI probe. Mean and SE was calculated for salinity, temperature and turbidity for each zone. Estuary means were calculated for each time by taking the mean of all zones in the estuary.

Chlorophyll a

National protocol: <u>www.lwa.gov.au/files/products/national-land-and-water-resources-audit/pn21537/pn21537.pdf</u>.

Matter for target:

Estuarine, coastal and marine habitat integrity.

Indicator heading:

Estuarine, coastal and marine habitat condition.

Indicator name:

Surface water chlorophyll a concentrations.

This document presents the recommended monitoring guidelines for collecting, collating and reporting information on surface water chlorophyll a concentrations for national, state/territory and regional application.

1. Definition

Chlorophyll a is the main green photosynthetic pigment found in all plants including phytoplanktonic algae. The concentration of chlorophyll a in estuarine, coastal or marine waters (water column) is used as an indicator of photosynthetic plankton biomass.

AIM: To determine annual median concentrations of chlorophyll a in major functional areas of estuarine or coastal waters and compare with local guidelines.

2. Rationale

The concentration of the photosynthetic green pigment chlorophyll a in estuarine, coastal or marine waters is a proven indicator of the abundance and biomass of microscopic plants (phytoplankton) such as unicellular algae and cyanobacteria. Phytoplankton are the direct or indirect source of food for most marine animals. Chlorophyll data are useful over a range of spatial scales from small coastal waters (estuaries, embayments and coastal lagoons) up to shelf seas. It can be used to estimate primary production but there is not necessarily a rigorous or coherent relation between biomass and primary productivity.

Chlorophyll a concentration is a commonly used measure of water quality (as a surrogate of nutrient availability) with low levels suggesting good condition. However, high levels are not necessarily bad; it is the long-term persistence of high levels that is a problem. The annual median chlorophyll a concentration is therefore used as an indicator in State of the Environment reporting (Ward *et al.*, 1998). Chlorophyll a was used as one determinant of ecosystem integrity in the National Estuary Assessment (stage 2: modified estuaries) completed for the National Land and Water Resources Audit (NLWRA, 2002).

The main cause of excessive algae growth appears to be increased nutrient inputs (indicating eutrophication). Declines in the abundance of filter-feeders (eg oysters and mussels), decreased turbidity (ie increased levels of light penetration), increased water temperature and decreases in flushing rates (eg. altered hydrodynamics and freshwater flow regimes) also contribute to algae growth.

For a detailed explanation of influences on chlorophyll a levels, the significance of these levels and which waterways are susceptible to elevated levels see the OzCoast and OzEstuaries website (<u>www.ozcoasts.gov.au/indicators/chlorophyll_a.jsp</u>).

3. Monitoring methodology

Chlorophyll a concentrations (expressed as micrograms per litre, μ g/L) are determined through direct (water sample) measurement methods.

Several different methods are available for collecting samples and measuring chlorophyll a levels. For example, water samples can be collected from boats or from shore, or water colour can be detected from space by satellites. The method(s) used will depend on factors such as location and resources available; however, methods used should be consistent with these guidelines.

The methodology below is based on field sampling by boat as it currently is the most effective and best identified for the majority of people. Local experts and the laboratory carrying out the analyses should be consulted before conducting any monitoring program, particularly with regard to aspects of the monitoring methodology, the quality control and quality assurance of data collected.

3.1 Monitoring locations (see MER Amendment)

Samples should be taken from sites within the mid estuary and, where possible, from the upper and lower reaches of an estuary. Samples should be taken as close to mid-stream as possible. In estuaries where little or no monitoring has been done before, the initial samples should ideally be taken along the length of the estuary at intervals of 10% of the total length (but not closer than every 3 km). Adequate spatial coverage should also be used to select sites within coastal waters.

3.2 Monitoring frequency required (see MER Amendment)

Chlorophyll concentrations need to be monitored on a monthly basis. In estuaries with a tidal range of approximately 2 m or more, sampling should be done on the falling tide at approximately half tidal height to reduce the influence of 'cleaner' marine waters. In estuaries with little or no tidal movement or marine areas, sampling can be done at any stage of the tidal cycle. Sampling should occur for at least one year.

3.3 Data measurement method (see MER Amendment)

The chlorophyll sample collected must not be directly touched by hand and all equipment must be kept free of contaminants, particularly acids, as this may result in chlorophyll degradation.

Equipment required:

- Boat
- Sampling cylinder (graduated 500 mL high-density polyethylene plastic cylinder)
- Sample filtration system (vacuum flask/side arm flask) connected to a hand-operated vacuum pump. A 47 mm diameter filtering manifold funnel is used to hold the sample water while filtering)
- Chlorophyll filter sample holding tubes (labelled high-density polyethylene 15 mL screwtop tubes graduated with 5 and 10 mL levels marked. Magnesium carbonate (0.01g) is added to these tubes before collecting samples
- Filters (1.2 µm glass fibre/coarse 'filter paper')
- Aluminium foil
- Ice box filled with crushed ice to keep samples chilled until they can be frozen.

Site procedures:

- 1. Chlorophyll a samples are collected when advised on the in situ field measurement sheets.
- 2. Locate the site using a Global Positioning System (GPS).
- 3. If safe to do so, cut the engine to prevent fouling and contamination of the sample.
- 4. Rinse the filter funnel in the water and make sure rinsing water is poured out.
- 5. Place a filter paper on the support screen of the filtering apparatus and screw the funnel to the screen.
- 6. Clear any floating matter or surface scum using the underside of the sample cylinder.
- 7. Invert the cylinder and place it under the water to approximately 20 cm depth. Turn the right way up and fill.
- 8. Vigorously swirl the water around the cylinder and discard. Repeat three times and retain the final sample for filtering.
- 9. Quickly discard water from the top of the cylinder to the first graduated mark so that the total volume filtered can be measured.
- 10. Pour some of the water into the filter funnel, being careful not to spill any.
- 11. Pump the hand vacuum pump to start suction. Do not allow the vacuum to exceed 40 kPa.
- 12. Maintain vacuum until the volume of water being drawn through has decreased to a dribble. This will be evident with increased vacuum pressure yielding constant and then decreasing flow as the filter paper becomes blocked. The volume of sample collected and filtered is not critical as long as a filter containing solid material is obtained for laboratory analysis, however, **the exact volume of water filtered needs to be recorded** for the laboratory to calculate concentrations. Discard the filtered water.
- 13. When an appropriate amount of water is passed through, remove the funnel from the filter apparatus.
- 14. Record the time of sampling and the volume filtered.
- 15. Gently fold the filter paper in half and remove it from the support screen ensuring fingers do not come in contact with the direct sampling area.
- 16. Gently place the filter paper on a piece of blotting paper to remove excess water.
- 17. Fold the filter paper in half again, place it in the relevant labelled 15 mL holding tube containing magnesium carbonate (0.01g) and replace the lid tightly.
- 18. Cover the tube completely with aluminium foil to block out light from the sample.
- 19. Place the tube in a clip-sealed plastic bag, place in the ice box and cover with crushed ice.
- 20. Samples should be frozen as soon as possible. They can be kept frozen for up to one month before being analysed.
- 21. Samples should be transported on ice to a laboratory for analysis. The amount of chlorophyll a collected on the filter paper is determined from laboratory analysis using a spectrophotometer and the original sample concentration (μ g/L) of chlorophyll a then calculated.

3.4 Data collation / calculation method (see MER Technical Report)

Data for a specific site should be collated over the study period and the median value calculated and compared against the relevant guidelines.

3.5 Data storage and management (see MER Technical report)

Data should be stored by state/territory agencies and by the collectors (if different) of the data. If possible, the public should have access to the data (and report summaries) through a website hosted by state/territory government.

3.6 Data analysis and interpretation (see MER Technical Report)

Data from at least one year should be used in the data analysis.

There can be significant spatial and temporal variation in phytoplankton concentrations. Spatial differences are often observed along the length of a waterway, whereas temporal differences are observed as some phytoplankton move up and down through the water column in a day/night cycle.

Low chlorophyll a levels suggest good water condition. However, high levels are not necessarily bad as increased phytoplankton growth tends to support larger heterotroph (eg. fish) populations. It is the long-term persistence of elevated levels that is a problem. Excessive growth often leads to poor water quality, noxious odours, oxygen depletion, human health problems and fish kills. It may also be linked to harmful (toxic) algal blooms.

Poor water quality associated with high chlorophyll concentrations needs to be distinguished from the natural variation observed with the seasons, with latitude, and those associated with hydrodynamic features (eg. upwelling). However, there is very little information to make this distinction (Ward *et al.* 1998).

Observed increases in the concentrations of chlorophyll in individual waterbodies may be related to increased nutrient concentrations, decreased flow/changed hydrodynamics (increased residence times) and/or decreased turbidity (increased light penetration) (ie the increasing eutrophication status). It is therefore important to try and correlate a change in chlorophyll concentration to nutrients, hydrodynamics and/or water clarity changes to determine if changes are natural or due to human impacts.

'National' default trigger values for chlorophyll a concentrations have been listed in the 'Water Quality Guidelines' for coastal waterways in different geographic regions (ANZECC/ARMCANZ 2000a); these trigger values are superseded in Queensland by the 'Queensland Water Quality Guidelines' (DERM 2009b). Local guidelines (which supersede both national and state/territory ones) may be available for some estuaries.

3.7 Reliability, validity and quality assurance

Quality assurance and control measures are important to minimise avoidable errors in the data and give more confidence in the data collected and conclusions made. Individuals collecting the data must have had adequate training in sample collection. Multiple samples and blanks should be taken occasionally as part of the QA/QC process. Instrument calibration and/or laboratory quality assurance should be regularly examined and recorded.

3.8 Metadata

Metadata documentation should be completed for all datasets (see Appendix A). The metadata statement should be consistent with current ANZLIC standards, which now comply with ISO 19115.

See the following web site for the Metadata Profile: <u>www.osdm.gov.au/ANZLIC_MetadataProfile_v1-1.pdf?ID=303</u>.

For the Metadata Guidelines see: www.osdm.gov.au/ANZLIC_MetadataProfileGuidelines_v1-0.pdf?ID=397.

8. Further information

ANZECC/ARMCANZ. 2000a, Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_for_fresh_and_marin e_water_guality.

ANZECC/ARMCANZ. 2000b, Australian Guidelines for Water Quality Monitoring and Reporting. www.mincos.gov.au/publications/australian_guidelines_for_water_quality_monitoring_and_reporting.

DERM 2009a, *Monitoring and sampling manual 2009,* Version 2, ISBN 978-0-9806986-1-9, Department of Environment and Resource Management, Brisbane, 228 pp. www.derm.gld.gov.au/environmental_management/water/pdf/monitoring-man-2009-v2.pdf.

DERM 2009b, *Queensland water quality guidelines,* Version 2, ISBN 978-0-9806986-0-2, Department of Environment and Resource Management, Brisbane, 167 pp. www.derm.gld.gov.au/environmental_management/water/pdf/wq-guidelines2010.pdf.

NLWRA (National Land and Water Resources Audit). 2002. *Australian Catchment, River and Estuary Assessment 2002*. Volume 1, 192 pp. National Land and Water Resources Audit, Commonwealth of Australia, Canberra.

OzCoasts. 2007. Web site. www.ozcoasts.gov.au/index.jsp.

Ward, T., Butler, E. and Hill, B. 1998, *Environmental indicators for national state of the environment reporting – Estuaries and the sea*. Australia: State of the Environment (Environmental Indicator Reports). 81 pp. Department of the Environment; Canberra. Website: www.environment.gov.au/soe/publications/indicators/pubs/estuaries.pdf.

Waterwatch manuals: See www.waterwatch.org.au/.

Waterwatch Queensland, 2003. *Community Estuarine Monitoring Manual.* The State of Queensland (Department of Natural Resources and Mines).

9. Glossary

Algal bloom – A heavy growth of algae in and on a body of water.

Biomass – The total weight of all living organisms in a biological community or of a particular species/group.

Cyanobacteria – Blue-green bacteria, sometimes (incorrectly) called blue-green algae.

Embayment – A large indentation of a shoreline, bigger than a cove but smaller than a gulf.

Eutrophication – The process of enrichment of water with organic matter and the subsequent depletion of dissolved oxygen. A natural process that can be caused/enhanced by an increase in nutrient loads or decreased flushing rates resulting from human activity

In-situ – Latin term for 'in the original place'.

Noxious - Harmful to physical health.

Photosynthesis – The process by which green plants convert water and carbon dioxide into food (carbohydrates) using the energy of the sun.

Phytoplankton – Microscopic floating plants, mainly algae, that live suspended in bodies of water.

Primary production – Production of food by photosynthetic organisms at the bottom of the food chain.

Spatial – Pertaining to space or distance.

Temporal – Pertaining to time.

Unicellular - Consisting of only one cell, eg single celled organisms such as bacteria.

Appendix A: Metadata statement

Monitoring program	The name of the monitoring program
Custodian of data/Contact	The business name and address/contact details of the
	custodial organisation or responsible party
Summary of program	A brief narrative summary of the program
Geographic extent	The ordinary name(s) of the locations where the data
	was collected (ie study area)
Indicators monitored	List of all indicators monitored
Method of data collection	Summary of the methods used to collect the data
Past/future sampling	Description of when sampling started, how often it
	occurred, when it will finish
Quality assurance	Description of the quality control/assurance procedures
	used
Data access	1) Location: Where and how the data is stored. If it can
	be accessed
	2) Format in which dataset is stored and available
	remotely (ie from a website)
	3) Any restriction or legal prerequisites that may apply to
	access and use the data
Other comments	Any other comments
Information source(s)	Where information on the program can be found (eg
	reports, literature, websites)
Date metadata created	Date when the metadata record was created

MER AMENDMENTS

3.1 Monitoring locations

The spatial scale of interest is the entire central basin of lakes and lagoons, and the assumed chlorophyll maximum that occurs in the mid-upper sections of river estuaries. To facilitate representative spatial coverage, estuaries were divided into zones. For creeks and lagoons, zones were assigned on charts before sampling commenced. A zone was an area 500 to 700 m diameter in which sampling takes place. Sufficient zones (up to three) were allocated to the central basin of each estuary so that the majority of the estuary is represented. This may mean small systems have only one zone. In MER Year 2 (2008), only the middle estuary was sampled in river estuaries. The middle estuary was defined as having a salinity of 8 - 15 ppt, but due to the short-term temporal variability in salinity, the long-term location was defined as being in the

vicinity of the upper limit of mangrove trees and this is where sampling was concentrated. Two zones were placed in the river in this vicinity. This procedure for rivers will be replaced by a longitudinal transect with continuously logged data from mid to upper estuary from MER Year 3 (2009) onwards.

3.2 Monitoring frequency required

Sampling windows across NSW are:

- NR CMA: mid September to end December
- HCR, HN and SM CMA: mid September to end March
- SR CMA: mid November to end March.

Spacing of sampling occasions was determined by a combination of logistics and the desire to fit six sampling occasions within the defined window. Southern Rivers CMA (MER Year 2 - 2008) estuaries were sampled at intervals of approximately three weeks, with all estuaries sampled within the same week.

Variables

The MER indicators that OEH sampled were chlorophyll and clarity (turbidity and secchi), supported by salinity data.

3.3 Data measurement method

Site Procedures

Field data sheets which recorded the entrance state, riparian condition, observations about macroalgae and other submerged aquatic vegetation, weather and any other relevant observations were also filled out for each estuary.

Travel to the upwind boundary of each zone in the estuary. Record secchi depth by lowering until not visible and noting depth, then lower some more and raise until visible, noting depth when visible. Secchi depth is the average of these two. The water quality probe, which recorded chlorophyll (fluorometric), turbidity, salinity, temperature, depth and time, is then fixed in the water at a depth of approximately 400 mm using a special cradle attached to the boat's gunwhale. Record the time at which the transect commences. The probe was set to log readings every second and the boat allowed to drift for five minutes. At the end of the transect, note the time that the transect ended. If there is insufficient wind, the boat was rowed or paddled for five minutes. This procedure captures data for a transect through the zone and allows the calculation of an average (or median) chlorophyll for the zone.

At the end of the transect, repeat secchi measurement and then slowly lower the sonde to the bottom, recording a profile of chlorophyll through the water column.

To allow calibration of chlorophyll as measured by the fluorometry probe and extracted chlorophyll an additional water sample was collected. To do this, a pole sampler was used during the drift to collect 10×1 m integrated water samples approximately 30 seconds apart. These samples were composited into a black bucket (to reduce light reflection). The fluorometric chlorophyll in the bucket was logged for two minutes and a 110 ml water sample taken directly from the bucket.

The water sample is kept cool and in the dark until the end of the day when it was filtered.

Samples are filtered by passing an exactly measured volume of sample (e.g. entire contents of 110 ml bottle) through the filter under vacuum. When all water has been extracted, remove vacuum pressure and funnel. Carefully fold filter into quarters with filtrate on the inside. Seal in a

vial and wrap vial in foil. If freezer is available, freeze vial and keep frozen until analysis. It is essential that vial remains frozen, if continuous freezing is not available or is uncertain, it is better to keep vial cold (on ice).

Instrument Calibration

The YSI Model 6820V2-S multiprobes used for the MER sampling were fitted with a fluorometric chlorophyll probe and a turbidity probe. The chlorophyll probe is factory calibrated and a standard solution of rhodamine was used prior to every field trip to check that the calibration remains constant over time and is consistent among probes. Salinity is also calibrated to a known seawater standard prior to every trip.

Data Analysis

Using the recorded start and end times, data for the transects in each zone and the data for the bucket, were extracted from the data files stored by the YSI probe. Mean and SE was calculated for salinity, temperature, and chlorophyll for each zone. Estuary means were calculated for each time by taking the mean of all zones in the estuary.

Calibration of insitu fluorometric chlorophyll and laboratory extracted chlorophyll was done by comparing the laboratory derived chlorophyll concentration in the composite water sample collected for the purpose during routine sampling, with the mean chlorophyll concentration in the bucket indicated by the fluorometry probe prior to the laboratory sample being collected. The results showed that there was a non-linear relationship between laboratory and in-situ fluorometry chlorophyll measurements. This relationship was best represented by two linear relationships, one for low to medium chlorophyll ($\leq 19 \mu g/l$) and the other for high to very high chlorophyll (>19 $\mu g/l$). For in-situ fluorometry readings $\leq 19 \mu g/l$, lab = 0.68 x in-situ (n = 242; r² = 0.88). For in-situ >19 $\mu g/l$, lab = 0.92 x in-situ (n = 14; r² = 0.98). These relationships will, however, be affected by the calibration of the in-situ probe and may not be immediately transferable to other probes. The basis of these relationships is provided in Appendix 14.

Comparison of laboratory extracted and fluorometric chlorophyll concentrations

Linear and non-linear regression techniques were used to examine the relationship between laboratory extracted and fluorometric chlorophyll determinations on the same samples. Analyses were done in the NCSS statistical package, and included boot-strap techniques to test the robustness of the relationships.

Initial inspection of the data indicated that the majority of the data had a fluorometric concentration of <19 μ g/l, with a fewer very large values. When all data were analysed together, the linear fit was strong, but the mass of data <19 μ g/l were contributing very little. In order to remove this bias, data were split into 2 groups, ≤19 μ g/l and >19 μ g/l.

It was initially hypothesised that "true-colour" of the water may be a confounding factor in the comparison, because it is well known that colour will induce a fluorometric signal in the absence of chlorophyll. Despite this, when colour was included in a multiple regression, it's contribution to the regression was not significant (p > 0.05) and so it was not included in further analyses.

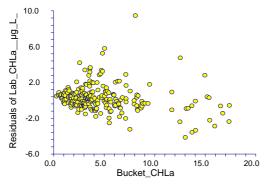
The results of regressions between laboratory and in-situ chlorophyll are shown below.

1. CHLOROPHYLL ≤19 μg/l

Filter	egression bucket_chla<19 and Lab_CHLaµg_L_<19 _CHLaµg_LX = in-situ (bucket)_CHLa Lab_CHLaµg_L_ vs Bucket_CHLa
15.0	•
I	• •
6,11.3	000
-ab_CHLa_	
ab_	
لى 3.8	
0.0	
	0.0 5.0 10.0 15.0 20.0 Bucket_CHLa

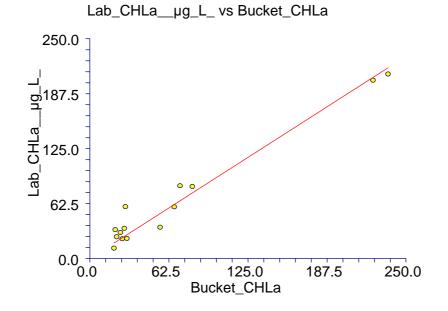
ParameterValueParameterValueDependent VariableLab_CHLa_µg_L_Rows Processed256Independent VariableDurate CHLaDependent CHLa242	
	le
Independent Variable — Ducket CIII a — Down Head in Estimation 242	
Independent Variable Bucket_CHLa Rows Used in Estimation 242	
Frequency Variable None Rows with X Missing 0	
Weight Variable None Rows with Freq Missing 0	
Intercept 0.0000 Rows Prediction Only 0	
Slope 0.6754 Sum of Frequencies 242	
R-Squared 0.8786 Sum of Weights 242.	0000
Correlation 0.9373 Coefficient of Variation 0.43	38
Mean Square Error 2.264892 Square Root of MSE 1.50	4956

Descriptive Statistics Sectio Parameter		Indonondont
Variable	Dependent Lab_CHLaµg_L_	Independent Bucket CHLa
Count	242	
Mean	3.4696	4.7895
Standard Deviation	4.3101	5.9818
Minimum	0.2400	0.2900
Maximum	14.9400	17.3900
Maximum	14.9400	17.5900
Regression Estimation Secti	on	
	Intercept	Slope
		-
Parameter	B(0)	B(1)
	B(0) 0.0000	B(1) 0.6754
Parameter Regression Coefficients Lower 95% Confidence Limit		()
Regression Coefficients Lower 95% Confidence Limit		0.6754
Regression Coefficients		0.6754 0.6435
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit		0.6754 0.6435 0.7072
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit Standard Error	0.0000	0.6754 0.6435 0.7072 0.0162
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit Standard Error Standardized Coefficient T Value	0.0000	0.6754 0.6435 0.7072 0.0162 0.9373
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit Standard Error Standardized Coefficient T Value Prob Level (T Test)	0.0000	0.6754 0.6435 0.7072 0.0162 0.9373 41.7606
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit Standard Error Standardized Coefficient T Value Prob Level (T Test) Prob Level (Randomization Te	0.0000	0.6754 0.6435 0.7072 0.0162 0.9373 41.7606 0.0000
Regression Coefficients Lower 95% Confidence Limit Upper 95% Confidence Limit Standard Error Standardized Coefficient T Value Prob Level (T Test)	0.0000	0.6754 0.6435 0.7072 0.0162 0.9373 41.7606 0.0000 0.0010


Estimated Model

0.67538041752488*Bucket_CHLa Bootstrap Section

Estimation Res	sults	- Bootstra	p Confidence Limits	\$
Parameter	Estimate	Conf. Level	Lower	Upper
Slope				
Original Value	0.6754	0.9000	0.6391	0.7074
Bootstrap Mean	0.6759	0.9500	0.6318	0.7135
Bias (BM - OV)	0.0005	0.9900	0.6169	0.7255
Bias Corrected	0.6749			
Standard Error	0.0207			
R-Squared				
Original Value	0.8786	0.9000	0.8465	0.9101
Bootstrap Mean	0.8804	0.9500	0.8419	0.9172
Bias (BM - OV)	0.0018	0.9900	0.8350	0.9331
Bias Corrected	0.8768			
Standard Error	0.0193			
Standard Error of Estima				
Original Value	1.5050	0.9000	1.2612	1.7537
Bootstrap Mean	1.4881	0.9500	1.2006	1.7918
Bias (BM - OV)	-0.0169	0.9900	1.0958	1.8734
Bias Corrected	1.5218			
Standard Error	0.1498			
Orthogonal Slope				
Original Value	0.7055	0.9000	0.6615	0.7441
Bootstrap Mean	0.7059	0.9500	0.6515	0.7515
Bias (BM - OV)		0.9900	0.6324	0.7635
Bias Corrected	0.7051			
Standard Error	0.0253			


Residual Plots Section

Residuals of Lab_CHLa__µg_L_ vs Bucket_CHLa

2. CHLOROPHYLL >19 μg/l

Linear Regression Filter Bucket_CHLa > 19 $Y = Lab_CHLa_\mu g_L X = Bucket_CHLa$

Run Summary Section

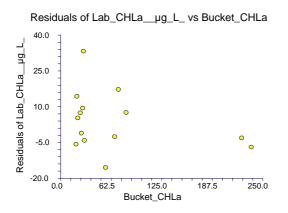
Parameter	Value	Parameter	Value
Dependent Variable	Lab_CHLaµg_L_	Rows Processed	256
Independent Variable	Bucket_CHLa	Rows Used in Estimation	14
Frequency Variable	None	Rows with X Missing	0
Weight Variable	None	Rows with Freq Missing	0
Intercept	0.0000	Rows Prediction Only	0
Slope	0.9194	Sum of Frequencies	14
R-Squared	0.9804	Sum of Weights	14.0000
Correlation	0.9902	Coefficient of Variation	0.1997
Mean Square Error	168.5134	Square Root of MSE	12.98127

Descriptive Statistics Section	า	
Parameter	Dependent	Independent
Variable	Lab_CHLaµg_L_	Bucket_CHLa
Count	14	14
Mean	65.0086	66.3900
Standard Deviation	89.4265	96.3057
Minimum	11.8300	19.0700
Maximum	209.9100	235.8300

Regression Estimation Section

Regression Estimation Section		
	Intercept	Slope
Parameter	B(0)	B(1)
Regression Coefficients	0.0000	0.9194
Lower 95% Confidence Limit		0.8416
Upper 95% Confidence Limit		0.9973
Standard Error		0.0360
Standardized Coefficient	0.0000	0.9902
T Value		25.5224
Prob Level (T Test)		0.0000
Reject H0 (Alpha = 0.0500)		Yes
Power (Alpha = 0.0500)		1.0000

Estimated Model


.919439649809071*Bucket_CHLa Bootstrap Section

Estimation Re	sults	E	Bootstrap Confidence Lin	nits
Parameter		Conf. Level	-	Upper
Slope				
Original Value	0.9194	0.9000	0.7995	0.9435
Bootstrap Mean	0.9344	0.9500	0.7477	0.9474
Bias (BM - OV)		0.9900	0.6633	0.9630
Bias Corrected	0.9045			
Standard Error	0.0481			
Correlation				
Original Value		0.9000	-0.9974	-0.9609
Bootstrap Mean	0.9864	0.9500	-0.9980	-0.9496
Bias (BM - OV)	0.9864	0.9900	-0.9987	-0.9221
Bias Corrected	-0.9864			
Standard Error	0.0129			
R-Squared	0.0004			4 0000
Original Value		0.9000	0.9660	1.0000
Bootstrap Mean	0.9731	0.9500	0.9648	1.0000
Bias (BM - OV)	-0.0074	0.9900	0.9634	1.0000
Bias Corrected	0.9878			
Standard Error	0.0250			
Standard Error of Estima			0.2020	10 5044
Original Value	12.9813	0.9000	8.3929	18.5044
Bootstrap Mean	12.3697 -0.6115	0.9500	7.6155 5.8260	19.0271 20.2298
Bias (BM - OV) Bias Corrected	13.5928	0.9900	5.8200	20.2290
Standard Error	3.0594			
Orthogonal Slope	3.0594			
Original Value	0.9279	0.9000	0.7759	0.9558
	0.3219	0.3000	0.1153	0.3000

Bootstrap Mean	0.9478 0.9500	0.7188	0.9600
Bias (BM - OV)	0.0200 0.9900	0.5991	0.9725
Bias Corrected	0.9079		
Standard Error	0.0610		

Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000.

Residual Plots Section

Seagrass, mangrove and saltmarsh areas

		lest et al. 19			liams et al.		Change %			
Estuary	Seagrass	Mangrove	Saltmarsh	Seagrass		Saltmarsh	Seagrass M	angrove Sa	ltmarsh	
Tweed River	331000	3091000	213000	806296	3982356	762540	144	29	258	
Cudgen Creek	0	94000	561000	8898	138927	52146	na	48	-91	
Cudgera Creek	16000	1380000	16000	33849	147656	74312	112	-89	364	
Mooball Creek	13000	53000	0	24169	114381	7982	86	116	na	
Brunswick River	18000	816000	56000	35833	1232821	310143	99	51	454	
Belongil Creek Tallow Creek	0 0	50000	54000 3000	0 0	69750 0	83235	na	40	54	
Broken Head Creek	0	0 0	36000	0	0	0 0	na	na	-100 -100	
Richmond River	189000	4949000	99000	320050	6025504	599383	na 69	na 22	505	
Salty Lagoon	ns	4949000 ns	99000 ns	320030 ns	0020004 NS	ns	ns	ns	ns	
Evans River	0	330000	375000	6344	408668	357594	na	24	-5	
Jerusalem Creek	0	000000	21000	0	000000	007004	na	na	-100	
Clarence River	1540000	5208000	1954000	826195	7652740	2901312	-46	47	48	
Lake Arragan	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Cakora Lagoon	ns	ns	ns	42	4561	128565	na	na	na	
Sandon River	28000	533000	258000	85901	574307	477427	207	8	85	
Wooli Wooli River	28000	493000	531000	94225	860129	668569	237	74	26	
Station Creek	0	0	0	0	435	3965	na	na	na	
Corindi River	33000	189000	293000	23680	371416	572380	-28	97	95	
Pipe Clay Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Arrawarra Creek	3000	0	8000	776	10171	9957	-74	na	24	
Darkum Creek	0	1000	0	12955	9716	417	na	872	na	
Woolgoolga Lake	0	2000	0	0	6343	180	na	217	na	
Flat Top Point Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Hearns Lake	0	8000	36000	0	2618	45023	na	-67	25	
Moonee Creek	4000	36000	73000	31596	85496	131679	690	137	80	
Pine Brush Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Coffs Creek	18000	167000	0	2178	191680	1795	-88	15	na	
Boambee Creek	11000	66000	158000	59900	330585	29444	445	401	-81	
Bonville Creek	8000	53000	148000	88727	137016	159401	1009	159	8	
Bundageree Creek	ns 59000	ns 847000	ns 29000	ns 132813	ns 1171670	ns 143445	ns 125	ns 38	ns 395	
Bellinger River Dalhousie Creek	12000	34000	29000	1629	6571	6878	-86	-81	395 129	
Oyster Creek	12000	34000 0	3000	029	217	2991	-oo na	na	na	
Deep Creek	7000	8000	604000	9608	35091	638670	37	339	6	
Nambucca River	224000	449000	1034000	605399	1454650	1276702	170	224	23	
Macleay River	1097000	5201000	3652000	957421	5710319	4247391	-13	10	16	
South West Rocks Creek	24000	528000	141000	2169	647819	112016	-91	23	-21	
Saltwater Creek (Frederickton)	0	00	0	0	0	0	na	na	na	
Korogoro Creek	0	13000	14000	383	57697	39775	na	344	184	
Killick Creek	11000	0	8000	102	45196	9150	-99	na	14	
Goolawah Lagoon	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Hastings River	1141000	2078000	804000	1457532	3437018	1866684	28	65	132	
Cathie Creek	7000	1000	5972000	0	32	5886867	-100	-97	-1	
Duchess Gully	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Camden Haven River	6336000	873000	780000	10249788	1408023	767556	62	61	-2	
Manning River	329000	3582000	721000	1654310	3905153	2447013	403	9	239	
Khappinghat Creek	19000	0	2000	3281	70	158886	-83	na	7844	
Black Head Lagoon	ns	ns	ns	0	279	0	na	na	na	
Wallis Lake	30786000	786000	4005000	31896878	1470832	5900187	4	87	47	
Smiths Lake	2080000	0	3000	2959901	0	0	42	na	-100	
Myall River	2815000	1021000	1784000	2173230	3027972	2670020	-23	197	50	
Karuah River	380000	3479000	4828000	66433	5069826	3756016	-83	46	-22	
Tilligerry Creek	7450000	00000000	7740000	4 4000000	40040500	40004000	00	40	00	
Port Stephens	7453000	23260000	7719000	14390806	19043533	10631930	93	-18	38	
Hunter River	153000	15481000	5049000	0	19217371	5204314	-100	24	3	
Glenrock Lagoon Lake Macquarie	ns 13391000	ns 998000	ns 705000	ns 14633220	ns 1249240	ns 887411	ns 9	ns 25	ns 26	
Middle Camp Creek	13391000 ns	998000 ns	705000 ns	14633220 ns	1249240 ns	887411 ns	9 ns	25 ns	20 ns	
Moonee Beach Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Tuggerah Lake	11619000	0	7000	17317511	802	129188	49	na	1746	
Wamberal Lagoon	245000	0	0000	435964	002	129100	49 78	na	na	
Terrigal Lagoon	46000	0	0	433904	1303	0	-100	na	na	
			_							
	161000	0	0	ne	ne	ne	na	na	na	
Avoca Lake	161000 0	0	0	ns 288967	ns 0	ns 0		na na		
	161000 0 5490000	0 0 1635000	0 0 918000	ns 288967 5581700	0 2077977	ns 0 1123910	na na 2	na na 27	na na 22	

Extuary Segress Margrovs Saturates Nangrovs		Area – V	Vest et al. 19	985 (m²)	Area – Wi	lliams et al.	2006 (m ²)	Change %			
Broken Bay ns ns 0 0 na ma <	Estuary	Seagrass	Mangrove	Saltmarsh	Seagrass	Mangrove	Saltmarsh	Seagrass M	angrove S	altmarsh	
Narraben Lagoon 448000 0 616753 7.7 7.905 3.2 na na <t< th=""><th>Pittwater</th><th>1934000</th><th>180000</th><th>26000</th><th>1891526</th><th>174793</th><th>26847</th><th>-2</th><th>-3</th><th>3</th></t<>	Pittwater	1934000	180000	26000	1891526	174793	26847	-2	-3	3	
Dee Why, Lapôon 34000 0 440000 0 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-										
Chrl Curl Lagoon 0	0										
Many Lapon 4000 0 0 1196 776 0 70 na na Lane Cove River Parrimanta River	, 0										
Madie Händun Creek Paramatis River Paramatis River ns 1266000 1475000 73000 518608 194897 -60 25 30 Cooks River 266000 230000 247000 1933544 3282446 333568 621 88 240 Bolany Bay 3403000 3990000 1601000 538484 229572 761668 57 -43 -52 Port Hacking B69000 280000 1601000 1002384 299180 123324 15 7 21 Watamola Creek ns ns<	U										
Lane Cove River Parrimanta River Parrimanta River Parrimata River Parr	, ,	4000	0	0	1190	170	0	-70	na	na	
Paramata River Pertualexison 126000 175000 73000 518060 1186987 94.897 6-00 22 30 Cooks River ns ns ns ns 0 108241 28651 nm											
Cooke River ns											
George River 286000 247000 1933544 3924546 8394586 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 621 681 631 63 6	Port Jackson	1286000	1475000	73000	518608	1846987	94897	-60	25	30	
Botan Bay Bay </td <td>Cooks River</td> <td>ns</td> <td>ns</td> <td>ns</td> <td>0</td> <td>108241</td> <td>2651</td> <td>na</td> <td>na</td> <td>na</td>	Cooks River	ns	ns	ns	0	108241	2651	na	na	na	
Port Hacking 889000 280000 106000 102388 229180 128326 15 7 21 Hargraves Creek ns ns <t< td=""><td>Georges River</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Georges River										
Wattamola Creek ns											
Hargraves Creek ns	0										
Starwell Creek ns											
Flansgans Creek ns	5										
Woodfands Creek ns Cocked River 10											
Slacky Creek ns	0										
Bellambi Louly ns											
Towradgi Creek 36000 0 0 0 281 0 -100 na na na Allans Creek ns											
Fairy Creek ns		ns			ns	ns			ns		
Allans Creek ns ns 0 20549 7633 na na na na Lake llawarra 6116000 0 203000 796598 57 302433 30 na 49 Eliott Lake 23000 0 0 0 7072 5136 661 -75 na na Minnamura River 23000 0 0 0 0 0 0 0 -50 82 66 Spring Creek 3000 0 0 0 775 10 0 -59 na na na Weri Lagoon 117000 0 0 45618 8145 17442 1040 na na na Crooked River 1018000 3476000 1542000 4239366 417988 2057804 316 20 33 Wolly Guily Cararma Creek ns ns ns ns ns ns ns na	Towradgi Creek	36000	0	0	0	291	0	-100	na	na	
Port Kambla 0 0 0 0 0 0 na Ma Pi Elliott Lake 28000 0 <td></td> <td>ns</td> <td>ns</td> <td>ns</td> <td></td> <td>ns</td> <td></td> <td></td> <td>ns</td> <td>ns</td>		ns	ns	ns		ns			ns	ns	
Lake Illwarra 6116000 0 203000 7965988 57 302433 90 na 49 Elliott Lake 28000 0 0 7072 5136 661 -75 na na Spring Creek 3000 0								na	na	na	
Elliott Lake 28000 0 0 7072 5136 661 -75 na na Minnamurra River 232000 484000 197000 116919 878742 326510 -50 82 86 Muna Munnora Creek ns ns ns ns ns ns ns ns na na Munna Munnora Creek ns na <											
Minnamura River 232000 484000 197000 116919 878742 326510 -50 82 66 Spring Creek 3000 0 0 0 0 0 0 0 -100 na ma ma Munna Munnora Creek ns ns ns ns ns ns ns ns ns na ma ma Croked River 4000 0 0 45618 8145 17142 1040 na na </td <td></td>											
Spring Creek 3000 0 0 0 -100 na na Munna Munnora Creek ns											
Munna Munnora Creek ns ns <td></td>											
Werri Lagoon 117000 0 0 775 10 0 -99 na na Crooked River 4000 0 0 45618 8145 17442 1040 na na Shoalnaven River 1018000 3476000 154200 4239366 4179888 2057804 316 20 33 Wollmboola Lake 1145000 0 0 1340071 0 0 17 na na Cararma Creek ns ns <td< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td></td<>			-	-	-	-	-				
Crooked Fuver 4000 0 0 45618 8145 17442 1040 na na Shoalhaven River 1018000 3476000 1542000 4239366 4179888 2057804 316 20 33 Wolumboola Lake 1145000 0 0 1340071 0 0 17 na na Currarong Creek ns											
Shoalhaven River 1018000 3476000 1542000 4233366 4179888 2057804 316 20 33 Wollumboola Lake 1145000 0 0 1340071 0 0 17 na na Currarong Creek ns	0										
Wollumboola Lake 1145000 0 0 1340071 0 0 17 na na Curranog Creek ns 1155000 125000 125000 25000 36000 3170393 275761 149322 -63 9 3155 S na na na na na <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Cararma Creek Wowly Gully Callala Creek Currambene Creek Moona Moona Creek Flat Rock Creek Captains Beach Lagoon Telegraph Creek Jervis Bay 9061000 1250000 36000 3170393 275761 1483421 -33 64 -36 St Georges Basin 8538000 252000 36000 3170393 275761 149322 -63 9 315 Swan Lake 587000 0 281291 0 0 0 25 na na Berrara Creek 6000 0 0 25206 0 5128 771 na na Nerrindillah Creek 5000 0 0 29593 0 0 492 na na Narrawallee Inlet 14000 378000 91000 86505 416161 175548 518 10 93 Millards Creek ns ns ns ns ns ns ns ns ns <	Wollumboola Lake	1145000	0	0	1340071	0	0	17	na	na	
Wowly Guily Callala Creek Currambene Creek Second Status Second Sta	Currarong Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Callala Creek Sevent State	Cararma Creek										
Currambene Creek Moona Moona Creek Flat Rock Creek Sevent Status Se											
Moona Moona Creek Flat Rock Creek Captains Beach Lagoon Telegraph Creek 9061000 1250000 233000 6082037 2053394 1483421 -3.3 64 -36 Jervis Bay 9061000 1250000 233000 6082037 2053394 1483421 -3.3 64 -36 St Georges Basin 8538000 0 0 281291 0 0 -655 na na Berrara Creek 6000 0 0 28266 0 5128 771 na na Nerrindillah Creek 5000 0 13000 166010 714 27075 -68 na 108 Narrawallee Inlet 14000 378000 91000 86505 416161 175548 518 10 93 Millards Creek ns ns ns ns ns ns ns ns 108 100 1446 -94 na na na na 102 1143 1143 103 1160 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Flat Rock Creek Captains Beach Lagoon Telegraph Creek Jervis Bay 9061000 125000 2330000 6082037 2053394 1483421 -33 64 -36 Ste Georges Basin 8538000 252000 30600 3170393 275761 149322 -63 9 315 Swan Lake 587000 0 2266 0 57771 na na Barrara Creek 5000 0 2266 0 492 na na Narawalkee Intel 14000 375 1483421 -75 na na Narawalkee Intel 14000 3760 1717 na na Mairwook Creek ns <td></td>											
Captains Beach Lagoon Telegraph Creek Jervis Bay 9061000 125000 2330000 6082037 2053394 1483421 -33 64 -36 Signed participation 8538000 250300 0 255 na na Swan Lake 587000 0 2266 0 0											
Telegraph Creek 9061000 1250000 233000 6082037 2053394 1483421 -33 64 -36 St Georges Basin 8538000 252000 36000 3170393 275761 149322 -63 9 315 Swan Lake 587000 0 0 261291 0 0 -55 na na Berrara Creek 6000 0 0 25266 0 5128 771 na na Conjola Lake 527000 0 13000 166010 714 27075 -68 na 108 Narrawallee Inlet 14000 378000 91000 88505 416161 175548 518 10 93 Millards Creek ns ns ns ns ns ns ns ns ns na											
Jervis Bay 9061000 1250000 233000 6082037 2053394 1483421 -33 64 -36 St Georges Basin 8538000 252000 36000 3170393 275761 149322 -63 9 315 Swan Lake 587000 0 0 252266 0 5128 771 na na Berrara Creek 6000 0 25256 0 5128 771 na na Conjola Lake 527000 0 13000 166010 714 27075 -68 na 108 Narrawallee Inlet 14000 378000 91000 86505 416161 175548 518 10 93 Mollymook Creek ns											
St Georges Basin 8538000 252000 36000 3170393 275761 149322 -63 9 315 Swan Lake 587000 0 0 261291 0 0 -55 na na Berrara Creek 6000 0 0 52266 0 5128 771 na na Nerrindillah Creek 5000 0 13000 166010 714 27075 -68 na na Conjola Lake 527000 0 13000 166010 714 27075 -68 na na Mollymook Creek ns ns ns ns ns ns na na Millards Creek ns ns ns ns ns ns ns ns ns Ulladulla 10000 0 628 1100 1446 -94 na na Burrill Lake 508000 0 157000 764311 0 236834 50 na 51 Tabourie Lake 1199000 0 0 <td>0 1</td> <td>9061000</td> <td>1250000</td> <td>2330000</td> <td>6082037</td> <td>2053394</td> <td>1483421</td> <td>-33</td> <td>64</td> <td>-36</td>	0 1	9061000	1250000	2330000	6082037	2053394	1483421	-33	64	-36	
Swan Lake 587000 0 261291 0 0 -55 na na Berrara Creek 6000 0 0 52266 0 5128 771 na na Nerrindillah Creek 5000 0 13000 166010 714 27075 -68 na 108 Narrawallee Inlet 14000 378000 91000 86505 416161 175548 518 10 93 Mollymook Creek ns ns ns ns 16 0 744 27075 68 na na Millards Creek ns Jurill Lake 508000 0 157000 764311 0 236814 -69 na na na Tabourie Lake 119900 0 0 5823 0 0 -92 na na Meroo Lake 1											
Nerrindillah Creek5000002959300492nanaConjola Lake52700001300016601071427075-68na108Narrawallee Inlet1400037800091000865054161611755485181093Mollymook CreeknsnsnsnsnsnananaMillards CreeknsnsnsnsnsnsnsnaUlladulla100000062811001446-94nanaBurrill Lake50800001570007643110236834500na51Tabourie Lake1199000010000219062039511-82nanaMeroo Lake11500000582300-92nanaWillinga Lake400000172838004221nanaDurras CreeknsnsnsnsnsnsnsnsnsMaloneys Creeknsnsnsnsnsnsnsna2712Clyde River92000231800010170079276933097352104376243-49Durras CreeknsnsnsnsnsnsnsnanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsns <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Conjola Lake52700001300016601071427075-68na108Narrawallee Inlet1400037800091000865054161611755485181093Mollymook Creeknsnsnsns240797nanananaMillards CreeknsnsnsnsnsnsnsnsnsnsUlladulla100000062811001446-94nananaBurrill Lake5080000157000764311023683450na515Termeil Lake1199000010000219062039511-82na295Termeil Lake700000075451300-92nanaMilorga Lake400000729501182143na-80Durras Lake5090000460004958120170619-3na271Durras CreeknsnsnsnsnsnsnsnsnsMaloneys CreeknsnsnsnsnsnsnsnsnsMaloneys CreeknsnsnsnsnsnsnsnsnsnsMaloneys CreeknsnsnsnsnsnsnsnsnsnsnsMaloneys Creeknsns<	Berrara Creek	6000	0	0	52266	0	5128	771	na	na	
Narrawallee Inlet 14000 378000 91000 86505 416161 175548 518 10 93 Mollymook Creek ns ns ns ns 24 0 797 na na na na Millards Creek ns na na<	Nerrindillah Creek	5000	0	0	29593	0	0	492	na	na	
Mollymook Creekns </td <td>Conjola Lake</td> <td>527000</td> <td></td> <td>13000</td> <td>166010</td> <td>714</td> <td></td> <td>-68</td> <td>na</td> <td>108</td>	Conjola Lake	527000		13000	166010	714		-68	na	108	
Millards CreeknsnsnsnsnsnsnsnsnsnsUlladulla100000062811001446-94nanaBurrill Lake5080000157000764311023683450na51Tabourie Lake1199000010000219062039511-82na295Termeil Lake7000000582300-92nanaMeroo Lake11500000754513004221nanaWillinga Lake400000172838004221nanaButters Creek300006600729501182143na-80Durras Lake5090000460004958120170619-3na271Durras CreeknsnsnsnsnsnsnanaMaloneys CreeknsnsnsnsnananaCullendulla Creek64000916000600012536088126417351696-42792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaTomaga River46000210000351000292731350955458274536		14000	378000	91000				518	10	93	
Ulladulla100000062811001446-94nanaBurrill Lake5080000157000764311023683450na51Tabourie Lake1199000010000219062039511-82na295Termeil Lake7000000582300-92nanaMeroo Lake11500000754513004221nanaWillinga Lake400000172838004221nanaButters Creek300006600729501182143na-80Durras Lake5090000460004958120170619-3na271Durras Creeknsnsnsnsnsnsnana710Cullendulla Creek64000916000600012536088126417351696-42792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Burrill Lake5080000157000764311023683450na51Tabourie Lake1199000010000219062039511-82na295Termeil Lake7000000582300-92nanaMeroo Lake11500000754513004221nanaWillinga Lake400000172838004221nanaButlers Creek3000066000729501182143na-80Durras Lake5090000460004958120170619-3na271Durras Creeknsnsnsnsnsnsna272Cullendulla Creek64000916000600012536088126417351696-42792Clyde River920002318000101700792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Tabourie Lake1199000010000219062039511-82na295Termeil Lake7000000582300-92nanaMeroo Lake1150000075451300556nanaWillinga Lake400000172838004221nanaButlers Creek300006000729501182143na-80Durras Lake5090000460004958120170619-3na271Duras Creeknsnsnsnsnsna2792Clyde River920002318000101700722769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Termeil Lake7000000582300-92nanaMeroo Lake1150000075451300556nanaWillinga Lake400000172838004221nanaButlers Creek300006000729501182143na-80Durras Lake5090000460004958120170619-3na271Durras Creeknsnsnsnsnsnsna271Durras Creeknsnsnsnsna271Durras Creeknsnsnsnsna271Cullendulla Creek64000916000600012536088126417351696-42792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Meroo Lake 115000 0 0 754513 0 0 556 na na Willinga Lake 4000 0 0 172838 0 0 4221 na na Butlers Creek 3000 0 6600 7295 0 1182 143 na -80 Durras Lake 509000 0 46000 495812 0 170619 -3 na 271 Durras Creek ns ns ns ns ns ns ns na 271 Durras Creek ns <											
Willinga Lake400000172838004221nanaButlers Creek300006000729501182143na-80Durras Lake5090000460004958120170619-3na271Durras Creeknsnsnsnsnsnsna271Durras CreeknsnsnsnsnsnsnsnsMaloneys Creeknsnsnsnsna2792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Butlers Creek 3000 0 6000 7295 0 1182 143 na -80 Durras Lake 509000 0 46000 495812 0 170619 -3 na 271 Durras Creek ns ns ns ns ns na 271 Durras Creek ns ns ns ns ns ns ns 271 Durras Creek ns 271 Maloneys Creek ns 143 ns 143 ns ns 143 143 <											
Durras Lake 509000 0 46000 495812 0 170619 -3 na 271 Durras Creek ns 1d 1d 1d 1d 1d ns ns ns ns ns id 1d id	-										
Durras Creek ns Maloneys Creek ns ns ns ns 0 0 0 na na na Cullendulla Creek 64000 916000 6600 125360 881264 173516 96 -4 2792 Clyde River 92000 2318000 1017000 792769 3309973 521043 762 43 -49 Batemans Bay 71000 0 0 189375 4344 0 167 na na Saltwater Creek (Rosedale) ns											
Maloneys Creeknsnsnsns00nananaCullendulla Creek640009160006600012536088126417351696-42792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Cullendulla Creek64000916000600012536088126417351696-42792Clyde River9200023180001017000792769330997352104376243-49Batemans Bay710000018937543440167nanaSaltwater Creek (Rosedale)nsnsnsnsnsnsnsnsTomaga River460002100003510002927313509554582745366731											
Batemans Bay 71000 0 0 189375 4344 0 167 na na Saltwater Creek (Rosedale) ns ns<	Cullendulla Creek	64000	916000		125360	881264	173516	96	-4	2792	
Saltwater Creek (Rosedale) ns ns <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>43</td><td>-49</td></th<>	-								43	-49	
Tomaga River 46000 210000 351000 292731 350955 458274 536 67 31	2										
Candiagan Creek 10000 21000 31000 4/632 39364 69562 198 8/ 124											
	Canulayan Creek	10000	21000	31000	4/032	39304	09002	190	07	124	

	Area – V	Vest et al. 19	985 (m²)	Area – Wi	lliams et al.	2006 (m²)	Change %			
Estuary	Seagrass	Mangrove	Saltmarsh	Seagrass	Mangrove	Saltmarsh	Seagrass M	angrove Sa	ltmarsh	
Bengello Creek	ns	ns	ns	0	0	0		na	na	
Moruya River	644000	380000	674000	1197096	473893	789552	86	25	17	
Congo Creek	0	0	0	2240	0	11187	na	na	na	
Meringo Creek	0	0	0	0	0	11572	na	na	na	
Kellys Lake	ns	ns	ns	0	0	0	na	na	na	
Coila Lake	1862000	0	317000	1367246	0	342675	-27	na	8	
Tuross River	452000	566000	401000	2175728	663830	801659	381	17	100	
Lake Brunderee	64000	0	246000	25656	0	16863	-60	na	-93	
Lake Tarourga	ns	ns	ns	0	0	0	na	na	na	
Lake Brou	78000	0	250000	0	0	88243	-100	na	-65	
Lake Mummuga	294000	0	55000	325367	13379	21511	11	na	-61	
Kianga Lake	11000	0	33000	112804	0	0	925	na	-100	
Wagonga Inlet	1484000	249000	56000	809085	197145	23295	-45	-21	-58	
Little Lake (Narooma)	ns	ns	ns	0	0	0	na	na	na	
Bullengella Lake	ns	ns	ns	0	0	0	na	na	na	
Nangudga Lake	120000	0	115000	201933	0	146448	68	na	27	
Corunna Lake	179000	0	33000	161255	0	49243	-10	na	49	
Tilba Tilba Lake	0	0	0	94977	0	156362	na	na	na	
Little Lake (Wallaga)	ns	ns	ns	0	0	16649	na	na	na	
Wallaga Lake	1343000	0	295000	1085268	0	161640	-19	na	-45	
Bermagui River	338000	434000	66000	271066	473147	167667	-20	9	154	
Baragoot Lake	49000	0	53000	6148	0	78956	-87	na	49	
Cuttagee Lake	430000	0	76000	384785	0	112547	-11	na	48	
Murrah River	16000	0	109000	96772	16990	161150	505	na	48	
Bunga Lagoon	0	0	180000	177	0	29876	na	na	-83	
Wapengo Lagoon	360000	409000	319000	417748	555116	505925	16	36	59	
Middle Lagoon	81000	0	11000	210739	0	52178	160	na	374	
Nelson Lagoon	114000	271000	63000	10050	490610	155448	-91	81	147	
Bega River	301000	0	411000	261152	0	533033	-13	na	30	
Wallagoot Lake	647000	0	14000	774321	0	117630	20	na	740	
Bournda Lagoon	43000	0	0	261	0	4622	-99	na	na	
Back Lagoon	204000	0	18000	215350	0	22052	6	na	23	
Merimbula Lake	2297000	377000	629000	1638211	349144	591391	-29	-7	-6	
Pambula River	868000	449000	188000	705673	580050	365549	-19	29	94	
Curalo Lagoon	58000	0	116000	184735	000000	89574	219	na	-23	
Shadrachs Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Nullica River	20000	0	0	11504	7596	18240	-42	na	na	
Boydtown Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Towamba River	27000	900000	9000	96833	16863	125219	259	-98	1291	
Fisheries Creek	33000	000000	11000	5764	00000	34588	-83	na	214	
Twofold Bay	26000	0	8000	739741	0	0	2745	na	-100	
Saltwater Creek (Eden)	20000 ns	ns	ns	ns	ns	ns	ns	ns	ns	
Woodburn Creek	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Wonboyn River	237000	0	483000	806180	223	517538	240	na	7	
Merrica River	237000	0	483000	001000	223	0 0	240 na	na		
Table Creek	ns	0 ns	ns	0	0	929	na	na	na	
	0	0	ns 0	36	0	929 82084			na	
Nadgee River Nadgee Lake	75000	0	0	30	0	82084	na -57	na na	na	
Nauyee Lake	10000	0	0	32302	0	909	-07	na	na	

= the area for that estuary has been combined into one value for a port, bay or harbour

ns = estuary was not surveyed

na = not applicable as there is only one survey for the estuary

na = not applicable as one or both surveys recorded nil area

Total Nitrogen load and chlorophyll a dataset

		Entrance	Areal load TN	Chl a (annual	TN increase
Estuary	Classification	condition	(t/km²/yr)	median µg/l)	score
Georges River	Lake	0	17.90	3.60	1
Botany Bay Wamberal Lagoon	Lake Lake	0	0.35 3.95	1.58 3.50	1 2
Brisbane Water	Lake	0	3.95 1.20	3.07	2
Middle Harbour Creek	Lake	ŏ	2.34	2.20	2
Lane Cove River	Lake	ŏ	8.82	3.50	2
Port Jackson	Lake	õ	0.30	1.90	2
Lake Illawarra	Lake	0/(I)	2.80	4.30	2
Camden Haven River	Lake	O/T	5.31	5.42	3
Wallis Lake	Lake	O/T	2.64	1.74	3
Smiths Lake	Lake	I	0.53	1.29	3
Lake Macquarie	Lake	O/T	1.24	2.32	3
Tuggerah Lake	Lake	I/(O)	1.97	3.49	3
Hawkesbury River	Lake	0	13.42	3.50	3
Narrabeen Lagoon	Lake	I/(O)	3.83	3.45	3
Swan Lake	Lake	I	0.72	0.53	3
Burrill Lake	Lake	O(I)	3.06	4.61	3
Wallaga Lake	Lake	O/I	7.76	1.80	3
Merimbula Lake	Lake	0	1.26	0.70	3
Myall River	Lake	0	0.94	2.27	4
Port Hacking	Lake	0	1.22	1.30	4
St Georges Basin	Lake	0	1.02	2.58	4
Conjola Lake Durras Lake	Lake Lake	0	2.11 1.55	1.50 3.17	4 4
		1	1.30	2.48	4
Coila Lake Wapengo Lagoon	Lake Lake	0	3.24	2.48 0.50	4
Wallagoot Lake	Lake	I	0.77	2.37	4
Tweed River	River	O/T	41.28	2.02	2
Brunswick River	River	0/T	74.07	3.90	2
Richmond River	River	0/T	89.85	2.42	2
Minnamurra River	River	0	24.76	1.32	2
Clarence River	River	O/T	29.64	2.48	3
Nambucca River	River	O/T	28.94	1.66	3
Macleay River	River	O/T	42.11	1.52	3
Hastings River	River	O/T	35.82	2.62	3
Manning River	River	O/T	36.99	2.79	3
Karuah River	River	0	13.77	1.89	3
Shoalhaven River	River	0	24.31	1.87	3
Bellinger River	River	O/T	50.02	1.54	4
Clyde River	River	0	9.01	2.51	4
Moruya River	River	0/T	29.98	1.91	4
Tuross River	River	0	15.22	2.59	4
Pambula River	River	0	7.84	1.57	4 5
Sandon River	River	0	6.71	0.92 3.11	
Dee Why Lagoon Curl Curl Lagoon	Lagoon	1	11.48 10.80	3.00	1
Manly Lagoon	Lagoon Lagoon	1	47.84	5.25	1
Belongil Creek	Lagoon	i	47.43	8.00	2
Avoca Lake	Lagoon	i	4.28	3.12	2
Bellambi Lake	Lagoon	i	46.90	6.70	2
Towradgi Creek	Lagoon	i	215.38	2.60	2
Fairy Creek	Lagoon	Ì	176.05	5.36	2
Spring Creek	Lagoon	i	37.00	2.20	2
Werri Lagoon	Lagoon	I	39.37	0.60	2
Khappinghat Creek	Lagoon	I	17.55	2.29	3
Termeil Lake	Lagoon	I	4.08	2.42	3
Meroo Lake	Lagoon	I	2.31	1.82	3
Willinga Lake	Lagoon	I	5.54	1.20	3
Congo Creek	Lagoon	I	59.93	4.15	3
Corunna Lake	Lagoon	I	3.72	3.10	3
Tabourie Lake	Lagoon	O(I)	3.99	1.57	4
Lake Brou	Lagoon	I .	2.59	1.79	4
Baragoot Lake	Lagoon	I I	4.52	4.63	4
Cuttagee Lake	Lagoon		6.10	1.69	4
Wattamolla Creek	Lagoon	1	11.56	0.88	5
Merrica River	Lagoon	I	40.93	1.65	5

Metric scores for Estuarine Fish Community Index

Metr		Metric no. 1 2		3	4	5	6	7	8	9	10	11	12	13	14			
Estuary	Metric	Species richness	Protected species	Introduced species	Species occurrence	Relative species abundance	Most abundant species	Estuarine resident taxa	Estuarine dependent marine taxa	Abundance of estuarine residents		Benthic feeding taxa	Fish eating taxa		Abundance of fish eaters	Estuarine Fish Community Index score	Index rating	Index score
Tweed River		3	3	3	3	5	3	3	3	1	. 1	3	3	5	1	40	Fair	3
Cudgen Creek Cudgera Creek		3	3	3	3	3	3	5	3	1	1	5	3	5	1	42	Fair	3
Mooball Creek						_												
Brunswick River		3	3	3	3	5	1	3	3	3	3	3	3	3	1	40	Fair	3
Belongil Creek		1	3	3	1	3	3	1	3	5	5	1	1	5	5	40	Fair	3
Tallow Creek		1	3	3	1	1	1	1	1	1	1	1	1	1	5	22	Very poor	1
Broken Head Creek		1	3	3	1	1	1	1	1	3	5	1	1	1	5	28	Poor	2
Richmond River		3	5	3	5	5	5	3	5	5	3	3	3	5	1	54	Good	4
Salty Lagoon																		
Evans River																		
Jerusalem Creek			_		_	_			_					_				
Clarence River		3	5	3	5	5	3	3	5	1	1	3	3	5	3	48	Fair	3
Lake Arragan																		
Cakora Lagoon																		
Sandon River		3	5	3	3	5	1	3	3	1	1	3	3	5	1	40	Fair	3
Wooli Wooli River		3	5	3	3	5	1	3	3	1	1	3	3	5	1	40	Fair	3
Station Creek		1	3	3	1	1	3	1	1	5	5	1	3	5	5	38	Fair	3
Corindi River		5	5	3	3	3	1	5	5	1	1	5	5	3	1	46	Fair	3
Pipe Clay Creek		1	3	1	1	1	3	1	1	5	1	1	3	5	5	32	Poor	2
Arrawarra Creek		3	3	3	3	5	3	3	3	3	3	3	1	5	5	46	Fair	3
Darkum Creek		3	3	3	3	3	1	3	1	1	1	3	1	3	5	34	Poor	2
Woolgoolga Lake		3	3	3	3	3	5	3	5	5	5	1	3	5	5	52	Good	4
Flat Top Point Creek																		
Hearns Lake		3	3	3	3	3	5	3	3	3	1	3	3	5	5	46	Fair	3
Moonee Creek		1	3	3	3	5	3	1	3	1	1	1	3	5	5	38	Fair	3
Pine Brush Creek																		
Coffs Creek																		
Boambee Creek		3	5	3	5	3	5	3	3	5	5	3	3	5	5	56	Good	4
Bonville Creek																		
Bundageree Creek																		
Bellinger River		5	5	3	5	5	1	5	5	1	1	5	5	3	1	50	Good	4
Dalhousie Creek		3	3	3	3	1	3	3	1	5	5	1	5	5	5	46	Fair	3
Oyster Creek		1	3	3	3	3	3	1	1	3	1	3	1	5	5	36	Fair	3
Deep Creek																		
Nambucca River		3	5	3	5	5	3	3	3	3	1	3	3	5	5	50	Good	4
Macleay River		3	3	3	5	5	3	3	5	3	3	3	3	5	1	48	Fair	3
South West Rocks Creek		3	3	3	3	3	3	5	5	3	3	5	3	5	1	48	Fair	3
Saltwater Creek (Frederickton)		1	3	3	1	1	1	1	1	3	3	1	1	5	3	28	Poor	2
Korogoro Creek		1	3	3	3	5	5	1	3	5	5	1	1	5	1	42	Fair	3
Killick Creek		1	3	3	1	3	1	1	3	3	3	1	1	5	5	34	Poor	2
Goolawah Lagoon																		-
Hastings River		5	5	3	5	5	3	5	5	3	3	5	3	5	1	56	Good	4
Cathie Creek		5	5	1	5	1	5	5	5	3	1	5	1	5	5	52	Good	4
Duchess Gully		-	-		-	-	-	-	-	-	-	-	-	-	-			
Camden Haven River																		
Manning River		3	5	3	5	5	3	5	3	1	1	3	3	5	3	48	Fair	3
Khappinghat Creek Black Head Lagoon		5	3	3	5	3	5	5	5	3	5	5	5	5	5	62	Very good	
Wallis Lake		3	5	3	3	3	3	3	3	1	1	3	3	5	1	40	Fair	3
Smiths Lake		0	÷	0	0	0	0	0	0	•		0	0	0	•			Ũ
Myall River																		
Karuah River		3	5	3	3	3	5	5	3	1	1	3	1	5	1	42	Fair	3
Tilligerry Creek		-	-	-	-	-	-	-	-		•	-		-				-

	Metric no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
Estuary	Metric	Species richness		Introduced species	Species occurrence	Relative species abundance	Most abundant species	Estuarine resident taxa	Estuarine dependent marine taxa			Benthic feeding taxa	Fish eating taxa	Abundance of benthic feeders	Abundance of fish eaters	Estuarine Fish Community Index score	Index rating	Index score
Port Stephens											•							
Hunter River																		
Glenrock Lagoon																		
Lake Macquarie		5	5	3	5	3	5	5	5	3	3	5	3	5	3	58	Good	4
Middle Camp Creek																		-
Moonee Beach Creek																		
Tuggerah Lake		3	5	3	5	3	5	5	5	3	3	3	3	5	5	56	Good	4
Wamberal Lagoon		3	3	3	3	1	1	3	3	1	3	1	5	5	5	40	Fair	3
Terrigal Lagoon		3	3	1	5	3	3	3	3	3	1	3	3	3	5	42	Fair	3
Avoca Lake		3	3	1	3	3	3	3	3	3	1	3	1	3	5	38	Fair	3
Cockrone Lake		1	3	1	3	1	1	1	3	3	3	1	1	5	5	32	Poor	2
Brisbane Water		5	3	3	5	5	3	5	5	3	3	5	3	5	1	54	Good	4
Hawkesbury River		5	5	3	3	3	5	5	3	3	3	5	3	5	5	56	Good	4
Pittwater		3	5	3	5	5	5	5	3	3	3	3	1	5	1	50	Good	4
Broken Bay															-			
Narrabeen Lagoon																		
Dee Why Lagoon		3	3	3	3	1	3	3	3	5	5	3	1	5	1	42	Fair	3
Curl Curl Lagoon		0	0	•	Ū	·	U	0	0	0		U		Ū	•			Ū
Manly Lagoon																		
Middle Harbour Creek																		
Lane Cove River																		
Parramatta River																		
Port Jackson		3	5	3	5	3	3	3	5	3	3	3	1	5	3	48	Fair	3
Cooks River		5	5	5	5	5	5	5	5	5	5	5		5	5	-10	1 611	5
Georges River		3	5	3	3	3	3	3	3	5	5	3	1	5	1	46	Fair	3
Botany Bay		5	5	5	5	5	5	5	5	5	5	5		5		-10	1 611	5
Port acking H		5	5	3	3	3	3	5	5	5	5	5	5	5	1	58	Good	4
Wattamolla Creek		5	5	5	5	5	5	5	5	5	5	5	5	5	i.	50	Guu	
Hargraves Creek																		
Stanwell Creek																		
Flanagans Creek																		
Woodlands Creek																		
Slacky Creek																		
Bellambi Gully Bellambi Lake																		
Towradgi Creek																		
Fairy Creek																		
Allans Creek																		
Port Kembla			-		•	•	0	•	-		0	•	-	-	-	50	0	. .
Lake Illawarra		3	5	3	3	3	3	3	5	3	3	3	5	5	5	52	Good	4
Elliott Lake																		
Minnamurra River																		
Spring Creek																		
Munna Munnora Creek																		
Werri Lagoon																		
Crooked River		_	_		_	_		_				_		_				_
Shoalhaven River		5	5	3	5	3	1	5	3	1	1	5	3	5	3	48	Fair	3
Wollumboola Lake																		
Currarong Creek																		
Cararma Creek																		
Wowly Gully																		
Callala Creek																		
Currambene Creek																		
Moona Moona Creek																		
Flat Rock Creek																		
Captains Beach Lagoon																		
Telegraph Creek																		
Jervis Bay																		
St Georges Basin		3	5	3	3	5	3	3	3	5	5	3	1	5	1	48	Fair	3
			5	0	÷	č	č	5	5	0		Ŭ	•	č	•			÷

	Metric no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
Estuary	Metric	Species richness	Protected species		Species occurrence	Relative species abundance	Most abundant species	Estuarine resident taxa	Estuarine dependent marine taxa	Abundance of estuarine residents		Benthic feeding taxa	Fish eating taxa	Abundance of benthic feeders	Abundance of fish eaters	Estuarine Fish Community Index score	Index rating	Index score
Swan Lake																		
Berrara Creek																		
Nerrindillah Creek																		_
Conjola Lake		5	5	3	5	3	5	5	5	5	5	5	3	5	3	62	Very good	5
Narrawallee Inlet		3	3	3	3	3	1	3	1	5	5	3	1	5	1	40	Fair	3
Mollymook Creek																		
Millards Creek																		
Ulladulla																		
Burrill Lake																		
Tabourie Lake																		
Termeil Lake																		
Meroo Lake		1	3	3	1	3	1	1	1	5	1	1	3	3	5	32	Poor	2
Willinga Lake		1	3	3	1	1	1	1	3	1	1	1	3	5	5	30	Poor	2
Butlers Creek																		
Durras Lake																		
Durras Creek																		
Maloneys Creek																		
Cullendulla Creek		1	5	3	3	3	3	1	3	5	5	3	1	5	3	44	Fair	3
Clyde River																		
Batemans Bay																		
Saltwater Creek (Rosedale)																		
Tomaga River																		
Candlagan Creek		1	3	3	3	5	3	1	1	5	5	3	1	5	5	44	Fair	3
Bengello Creek		-	-	-	-	-	-	-		-	-	-		-	-			-
Moruya River		5	5	3	5	5	5	5	5	5	5	5	3	5	5	66	Very good	5
Congo Creek		U	0	U	0	0	0	U	0	0	0	Ū	U	0	0		, i c. j good	Ű
Meringo Creek																		
Kellys Lake																		
Coila Lake																		
Tuross River		5	5	3	5	3	3	5	5	5	5	5	5	5	5	64	Very good	5
Lake Brunderee		3	3	1	3	3	3	1	5	3	3	3	3	5	5	44	Fair	3
Lake Tarourga		5	5	1	5	5	5	1	5	5	5	5	5	5	5		Fair	5
Lake Brou		1	3	3	3	3	1	1	1	5	1	1	3	5	5	36	Fair	3
Lake Mummuga		5	5	3	5	1	5	5	5	3	1	5	5	5	3	56	Good	4
		5	5	5	5	1	5	5	5	5	1	5	5	5	5	50	6000	
Kianga Lake																		
Wagonga Inlet																		
Little Lake (Narooma) Bullengella Lake																		
		2	-	2	2	2	4	1	1	2	~	2	2	<i>r</i>	5	44	Taia	2
Nangudga Lake		3	5	3	3	3	1	1	1	3	5	3	3	5	5	44	Fair	3
Corunna Lake										_				-			-	
Tilba Tilba Lake		1	3	3	1	3	1	1	1	5	1	1	1	5	1	28	Poor	2
Little Lake (Wallaga)																		
Wallaga Lake																		
Bermagui River			_							_				_	_		_	
Baragoot Lake		1	5	3	1	1	1	1	1	5	1	1	3	5	5	34	Poor	2
Cuttagee Lake																		_
Murrah River		5	5	3	3	1	5	5	5	3	3	5	3	5	3	54	Good	4
Bunga Lagoon		1	3	3	1	3	1	1	1	5	3	3	1	5	1	32	Poor	2
Wapengo Lagoon		3	5	3	3	3	3	3	3	5	5	3	1	5	1	46	Fair	3
Middle Lagoon		1	3	3	1	1	1	1	1	5	5	1	1	5	1	30	Poor	2
Nelson Lagoon		3	5	3	3	3	1	3	3	5	5	1	1	5	1	42	Fair	3
Bega River		5	5	3	5	3	5	3	5	5	5	3	5	5	5	62	Very good	5
Wallagoot Lake		1	5	3	3	3	1	3	1	5	1	3	1	5	1	36	Fair	3
Bournda Lagoon																		
Back Lagoon		1	3	3	3	3	1	1	3	5	1	1	3	5	5	38	Fair	3
Merimbula Lake		5	5	3	3	1	3	5	3	3	1	5	3	5	1	46	Fair	3
Pambula River		5	5	3	5	3	3	3	3	5	3	5	5	5	3	56	Good	4
Curalo Lagoon		5	3	3	3	3	5	3	5	5	1	3	5	5	5	54	Good	4

	Metric no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
Estuary	Metric	Species richness	Protected species	Introduced species	Species occurrence	Relative species abundance	Most abundant species	Estuarine resident taxa	Estuarine dependent marine taxa	Abundance of estuarine residents		Benthic feeding taxa	Fish eating taxa		Abundance of fish eaters	Estuarine Fish Community Index score	Index rating	Index score
Nullica River		1	3	3	1	1	1	1	3	3	3	1	3	5	3	32	Poor	2
Boydtown Creek																		
Towamba River Fisheries Creek Twofold Bay		3	5	3	5	5	3	3	3	3	3	3	3	5	5	52	Good	4
Saltwater Creek (Eden) Woodburn Creek Wonboyn River Merrica River Table Creek		3	5	3	5	3	5	3	5	5	5	3	3	5	5	58	Good	4
Nadgee River Nadgee Lake																		

Estuary pressures identified in catchment action plans

Theme / CMA	Northern Rivers	Hunter–Central Rivers	Southern Rivers
Water flows	Changed hydrological regimes, mechanical opening of ICOLLs	Changed flow regimes from freshwater extraction, impervious surfaces, floodplain disconnection, entrance manipulation	Entrance management
Water quality	Pollution, stormwater runoff	Pollution particularly stormwater	Nutrient and sediment input from agriculture, industry, new development roads, acid sulfate soils
		Release of treated sewage effluent	
		Sewage from holding tanks	
Sedimentation	Dredging impacts on species, habitats and ecosystems	Dredging	Dredging
Aquatic habitats	Boating, boat moorings, construction of jetties, pontoons and boat ramps causing foreshore erosion, pollution, habitat degradation and loss	Seagrass impacts from jetties, moorings, marinas and ports	
	Mangrove expansion into seagrass and saltmarsh habitats	Saltmarsh, seagrass decline, mangrove increase	
	Estuarine weeds, vertebrate pests eg. fox, dogs, cats impact on waders and shore birds	Weeds and pests from ballast water, etc	Invasive pests
	Uncontrolled pedestrian and recreational vehicle access causing damage to inter-tidal zone species and foreshore erosion		Uncontrolled multiple access points over sensitive vegetation eg saltmarsh
Wetlands		Wetland degradation from altered water regimes, construction of canals, levee banks, floodgates, drainage lines, water extraction, infilling for development, construction of weirs and dams, uncontrolled stock access, vegetation clearing, nutrient enrichment Flood mitigation: floodgates, levee banks	
Foreshores		Loss of foreshore vegetation	Riparian vegetation removal
			Vegetation clearing for views Rubbish
	Reclamation for development or in response to bank erosion		
		Bank erosion from boat wakes	
Natural hazards	Climate change and sea level rise	Climate change	
	Natural hazards from storms and rain causing erosion, loss of vegetation/habitat, reduced amenity, flooding, infrastructure damage/loss, some impacts worsened by seawalls, breakwaters and groynes		
Estuary use	Growing resource-based and NRM tourism		
,,		Boating	Divers/water-based tourism

Theme / CMA	Northern Rivers	Hunter–Central Rivers	Southern Rivers
Fishing and harvesting	Unsustainable commercial and recreational fishing practices causing habitat degradation, pollution, impacts on both target and incidental species	Commercial and recreational fishing	Commercial and recreational fishing
			Illegal harvesting/hunting
Catchment development	Population growth – increased urban, industrial and ribbon development, poor planning, inappropriate zoning, over-clearing of public land for asset protection zones, habitat fragmentation and loss, increased weeds and pests	Urban development	
O	Cumulative impacts of all pressures		
Community capacity	Low levels of community awareness and understanding of coastal, estuary and marine environments and processes		
	Poor understanding and use of appropriate education programs		

Potential pressure indicators for each stressor

Stressor	Direct indicators	Indirect indicators	Ecosystem condition indicators		Habitat extent indicators
			Physical-chemical	Biological	
Aquatic sediments (changed) Change to load, distribution/ movement patterns, settlement/resuspension rates, grain size of suspended or settled sediments	Total diffuse sediment load entering the estuary/coastal/marine system (monitored or modelled) Total point source sediment load entering the estuary/coastal/marine system (monitored or modelled) Volume of sediment moved/extracted	Catchment land-use (protected/natural/ minimal use, livestock grazing, cropping, horticulture, urban) % of farming area using best management practice % of length of stream with healthy riparian zone % of length of streams in grazing area fenced Volume of sediment moved/extracted	Turbidity/water clarity <u>OR</u> Sedimentation/erosion rates	Animal or plant species abundance (<i>loss of</i> <i>light-dependent biota,</i> <i>loss of sessile biota</i>)	Extent/distribution of intertidal mudflats (see indicator 'extent/ distribution of key habitat types') <u>OR</u> Extent/distribution of beach and dunes (see indicator 'extent/ distribution of key habitat types') <u>OR</u> Seagrass depth range
Bacteria/pathogens Bacteria, viruses, protozoans or fungi which cause disease	Total diffuse bacterial load entering the estuary/coastal/marine system (monitored or modelled) Total point source bacterial load entering the estuary/coastal/marine system (monitored or modelled)	Number of sewage overflow events % of sewage effluent disinfected % of urban area % of catchment under intensive livestock % of intensive livestock area using best management practice	None recommended	Targeted pathogen counts	None recommended
Biota (plant or animal) removal/disturbance Removal, loss or disturbance of individual organisms of a specific species, not areas of habitat	Commercial seafood catch Recreational seafood catch Bait catch Area disturbed by bait fishing Area disturbed by trawling Area disturbed by boat anchor damage Fisheries by-catch	Number of registered boats in region Length of shark nets/drum line present Recreational usage (eg number of facilities on coast (boat ramps, parts, etc.). % estuary, coast and marine systems accessible, tourism (visitation rates, number of marina berths, etc.)) Coastal population size Number of trawlers and dredges using area Number of commercial fishing licences Number of licensed collectors (of aquarium fish, shells, etc.) Number of impoundments without fish ladders	None recommended	Animal or plant species abundance <u>OR</u> Death of marine mammals, endangered sharks and reptiles caused by boat strike, shark nets or drum lines	None recommended

Stressor	Direct indicators	Indirect indicators	Ecosystem condition indicators		Habitat extent indicators
			Physical-chemical	Biological	
Excess freshwater as a pollutant (hypersaline) Localised or point source discharge of freshwater (not diffuse catchment runoff)	Total point source freshwater load entering the estuary/coastal/marine system (monitored or modelled)		Salinity	None recommended	None recommended
Excess salt as a pollutant (hypersaline) Localised or point source discharge of salt or salty water	Total point source salt load entering the estuary/coastal/marine system (monitored or modelled)	Number of desalinisation plants % of area under saltworks	Salinity	None recommended	None recommended
Freshwater flow regime (changed) Changes to pattern/amount of catchment waters entering estuarine and coastal systems	Change in median freshwater input (volume) Base freshwater input compared to total estuary volume Number of times freshwater flow greater than estuary volume Change in seasonality of freshwater input	% of median annual flow impounded/extracted	Salinity <u>OR</u> Estuary mouth opening/closing	None recommended	None recommended
Habitat removal/ disturbance Removal, loss or disturbance of large areas of habitat, such as those listed in the 'Key habitats' indicator profile	% of estuary/coast/marine area modified	% of aquatic area under mining lease Number of boating/shipping visits Number of registered boats in region % of estuary/coast/marine area designated for future modification Coastal population size Recreational usage (eg number of facilities on coast (boat ramps, parks, etc.), % estuary, coast and marine systems accessible, tourism (visitation rates, etc.)) % of area under aquaculture	None recommended	Animal or plant species abundance (species dependent on the habitat removed/disturbed)	Extent/distribution of key habitat types

Stressor	Direct indicators	Indirect indicators	Ecosystem condition indicators Physical-chemical	Biological	Habitat extent indicators
Hydrodynamics (changed) Changes to local patterns of waves, currents or tidal exchange	Change in tidal compartment Change in tidal exchange rates/residence time Change in tidal velocity	Presence of entrance modifications Presence of canals, piers, other estuary modifications Presence of barrages Areal extent of channel dredging	Estuary mouth opening/closing <u>OR</u> Salinity <u>OR</u> Water-current patterns	Algal blooms <u>OR</u> Chlorophyll a <u>OR</u> For seagrass and mangroves: Biomass, or number per unit area, of epiphytes <u>or</u> For intertidal sand/mudflat: Benthic microalgae biomass <u>or</u> For rocky shores, rocky reef and coral reef: Biomass, or number per unit area, of macroalgae	None recommended
Litter Human made rubbish/ debris	Quantity and type of litter entering estuary (monitored or remodelled)	Coastal population size Number of registered boats in region Recreational usage (eg. number of facilities on coast (boat ramps, parks, etc.) % estuary, coast and marine systems accessible, tourism (visitation rates, etc.))	Presence/extent of litter	Animals killed or injured by litter (<i>entanglement,</i> starvation, suffocation)	None recommended
Nutrients (changed) Change to load, bioavailability, concentrations of nutrients	Total diffuse nutrient load entering the estuary/coastal/marine system (monitored or modelled) Total point source nutrient load entering the estuary/coastal/marine system (monitored or modelled)	Catchment land-use (protected/natural/animal use, livestock, grazing, cropping, horticulture, urban) Amount of fertiliser applied per unit area (including urban) % of farming area using best management practice % of length of stream with healthy riparian zone % of sewage treatment plants with tertiary treatment Volume/number of sewage overflow events % of urban area under stormwater management plan % of area under aquaculture	Total nutrients in the water column WITH dissolved nutrients in the water column <u>OR</u> Total nutrients in the sediments WITH dissolved nutrients in the sediments	Algal blooms <u>OR</u> Chlorophyll a <u>OR</u> For seagrass and mangroves: Biomass, or number per unit area, of epiphytes <u>Or</u> For intertidal sand/mudflat: Benthic microalgae biomass <u>Or</u> For rocky shores, rocky reef and coral reef: Biomass, or number per unit area, of macroalgae	Extent/distribution of subtidal macroalgae

Stressor	Direct indicators	Indirect indicators	Ecosystem condition indicators		Habitat extent indicators
			Physical-chemical	Biological	
Organic matter (changed) Organic matter is carbon based material derived from plants or animals (eg decaying plant matter or animal wastes). It can be in either dissolved or particulate forms	Total diffuse organic matter load entering the estuary/coastal/marine system (monitored or modelled) Total point source organic matter load entering the estuary/coastal/marine system (monitored or modelled)	Catchment land-use (protected/natural/ animal use, livestock, grazing, cropping, horticulture, urban) % of each level of sewage treatment Number and volume of licensed discharges Volume/number of sewage overflow events % of catchment area under intensive livestock (eg feed lots) % of intensive livestock area using best management practice % of area under aquaculture	Dissolved oxygen	Animal kills	None recommended
Pest (plant, animal) species An invasive organism that is detrimental to an ecosystem	Number of new pest species entering the estuary/coastal/marine system Extent and number of pest species present in the estuary/coastal/marine system Rate of spread of pest species through the estuary/coastal/marine system	Presence of pest species in adjacent areas Number of international and/or domestic shipping/boating visits to region Presence of aquaculture facilities using species non-native to the region Presence of port/harbour/marina (domestic and international)	None recommended	Pest species (number, density, distribution)	None recommended
pH (water changed) Acidity or alkalinity of water	Volume of run-off from acid affected areas (modelled) Volume and pH differential of discharge/runoff	Areal extent of disturbed acid sulphate soils (% of land <5m AHD cleared/modified) Number of industrial licensed discharges	рН	Animal kills <u>OR</u> Animal disease/lesions	None recommended
Toxicants Loads, concentrations or bioavailability of pesticides, herbicides, organics, oils, hydrocarbons, metals, metalloids, organometallics, radiation, other toxic chemicals and contaminants	Total diffuse toxicant load entering the estuary/coastal/marine system (monitored or modelled) Total point source toxicant load entering the estuary/coastal/marine system (monitored or modelled)	Quantity of pesticide/herbicide sold or applied per unit area (rural and urban) Area of catchment treated by pesticide/herbicide (rural and urban) Number of cars per unit urban area (hydrocarbons) % of urban area % of catchment area under mining lease % of mines using best management practice Number of industrial licensed discharges Number of boat visitations Number of berths at ports/harbours/marinas Number of slipways using best management practice	Water soluble toxicants in the water column <u>OR</u> Toxicants in the sediment <u>OR</u> Toxicants in biota	Animal kills <u>OR</u> Occurrence of imposex	None recommended

Stressor	Direct indicators	Indirect indicators	Ecosystem condition indicators		Habitat extent indicators
			Physical-chemical	Biological	
Water temperature (changed) Local and surface water (sea, estuary) temperature	Volume and temperature differential of discharge	Annual average air temperature Number of industries (eg power stations) which discharge hot/cold water Number and volume of dam discharges of cold water	Water temperature	Coral bleaching	None recommended

LEGEND

Data feasible to collate

Data more difficult to collate

Raw pressure data

Entropy 196 2006 (v) 197 19	<u> </u>	F	Population			pended So			hosphorus	s Load		Total Nitro	gen Load				_		
Enumy 1996 2001 2005 (by) TP (by) (by) <th></th> <th></th> <th></th> <th></th> <th>Diffuse</th> <th>Diffuse</th> <th></th> <th>Diffuse</th> <th>Diffuse</th> <th></th> <th>Diffuse</th> <th>Diffuse</th> <th></th> <th>Areal</th> <th></th> <th></th> <th>•</th> <th>epening</th> <th>Fish</th>					Diffuse	Diffuse		Diffuse	Diffuse		Diffuse	Diffuse		Areal			•	epening	Fish
Tweed River 65072 61648 64168 55376 52273.6 223.3 16.41 101.526 101.88 16.61 0 72.42 71.7 0.02 0					pre-clear	current		pre-clear			pre-clear	current		load		Structures		levels (m	catch
Chalgen Creek 3839 3872 3872 3914 12473.8 0 1.6 12.66 0 18.83 16.01 0 79.24 717 0.02 0 Modolal Cock 3130 3747 3861 616.9 877.8 0 128.7 138.2 16.11 88.7 0 22.7 138.2 15.8 21.8 0 22.7 138.2 12.8 0.24.79 29.7 0 0 0 Modolal Cock 32.5 312.9 318.8 14.1 18.8 14.1 0 0.16 0 6.4 7.4 2.8 0 2.6 0																		AHD)	(t/yr/km ²
Cudgera Creek 1715 1863 250 334.5 6147.4 0 0.99 7.35 0 1611 89.77 0 219.67 279 0 0 0 Sinnewick Kiver 1214 11852 12228 1340.4 12286 7.3 3.97 29.27 1382 0 246.4 265.7 5.8 82.79 2296 0.0 0 Sinnewick Kiver 1214 11852 1228 1340.4 12286 7.3 3.97 29.27 1382 0 246.4 265.7 5.8 82.79 2296 0.0 0 Detecken Head Creek 362 348 284 4.0 21.4 0 0.01 0.05 0.0 19 0.48 0 9.07 0 0 0 Broken Head Creek 362 348 284 4.0 21.4 0 0.01 0.05 0 0.19 0.48 0 9.07 0 0 0 Broken Head Creek 122 146 10249 10229 12259 22741.1 30.0 13.8 71.3 344.2 13.9 9.07 0 0 0 Sinnewick 1026 1229 2241.4 0 0.01 0.05 0 0.18 0.38 0.38 0.22 0 0.28 0.28 0.29 0 Sinnewick 122 15 15.5 12.7 1 0 0.22 0.2 0 0.38 0.36 0.29 19.0 13.8 0 0.3 0 0 Lawasker 133 1445 127 142.9 343.5 12.7 0 0.37 0.38 0.8 0.5 0 13.8 11.65 0 0.3 3.8 0 Lawasker 133 145 127 14.9 14.1 12.7 0 0.37 0.38 0.8 0.6 0.9 13.8 11.65 0 0.0 0 Sinnewick 12 15 15.8 12.7 1 0 0.37 0.38 0.8 0.8 0.9 13.8 5.0 0.0 0.0 0 Cakora Layon 97 94 83 3.8 3.8 4 0 0.11 0 1.77 1.83 0 8.00 0 0 0.0 0 Cakora Layon 97 94 83 36.8 33.4 0 0.11 0 1.77 1.83 0 8.00 0.0 0.0 0.0 0 Cakora Layon 97 94 83 56.2 298.5 0 1.65 1.77 0 2.26 2.0 2.13 0.8 0.8 0.0 0.0 0.0 0 Cakora Layon 97 94 83 56.2 17.7 7 0 0.02 0.27 0.28 0.8 0.3 0.0 4.05 0.0 0.0 0 Cakora Layon 97 94 83 56.2 17.7 7 0 0.02 0.2 0.21 0.0 0.8 0.0 0.0 0.0 0 Cakora Layon 97 94 83 56.2 17.5 77.7 0 0.02 0.2 0.21 0.0 0.8 0.0 0.0 0.0 0 Cakora Layon 97 94 84 536 51.7 7 7.7 0 0.02 0.2 0.21 0.0 0.0 0.0 0.0 0 Cakora Layon 98 0.0 0 0 1 7.75 77.7 0 0.02 0.2 0.21 0.0 0.0 0.0 0.0 0.0 0 Cakora Layon 98 0.0 0 0 1 7.75 77.7 0 0.02 0.2 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0 Cakora Layon 99 0.0 0 1 7.75 77.7 0 0.02 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 Cakora Layon 99 0.0 0 0 1 7.75 77.7 0 0.02 0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0																		na	6.46
Mode Mode Strage													-					na	
Branskirk Niver 11214 1132 1228 1340.4 13286 7.3 3.37 292 0.2 64.4 265.75 5.6 8.2.79 2.266 0.30 0.09 Elemongl Creek 2336 3129 3198 13.1 28.4.3 0 0.04 0.4 5.4 5.74 2.53 3.8 81.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J						-						-					na	
Belongin Creak 4646 5507 3805 119.3 271.8 7.2 0.35 1.66 0.4 5.74 12.33 3.8 88.14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mooball Creek	3130	3747	3961	616.9	8678.9	0	1.83	14.15		29.70	138.82	0	264.79	917		0	na	
Tallov Creek 2336 3129 3198 13.1 84.3 0 0.04 0.04 0 0.83 2.58 0 21.66 0 0 0 Richmend River 10216 102481 102396 162359 227541.1 65.8 48.11 77.01 3.8 781.73 344.82 13.9 91.65 94.49 42.33 0.21 Stayl Lagoon 13.8 1445 12.7 162.9 343.5 11.2 0.42 0.	Brunswick River	11214	11832	12226	1340.4	13298.6	7.3	3.97	29.22	0.2	64.54	265.75	5.6	82.79	2296	0.30	0.09	na	(
Broken Head Creek 382 348 284 4.0 2.14 0 0.01 0.05 0.48 0.48 0.49 0.75 0.42 0.0 0.13 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.14 9.0 9.16 9.11 9.16 9.11	Belongil Creek	4646	5507	3805	119.3	271.8	7.2	0.35	1.65	0.4	5.74	12.93	3.8	88.14	0	0	0	1.11	(
Richmond River 102146 102261 162266 16228 227541.1 65.8 48.11 37.001 3.8 781.73 3448.23 13.9 91.65 94.493 0.21 Evans River 1333 1485 1277 162.9 3.35 12.3 0.48 1.26 3.0 6.04 6.34 9.9 3.0.8 0.624 0.38 0.0 0.0 0.37 0.38 0.64 6.34 0.9 3.0.8 76254 0.0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 12.78 0.0.0 0.0 1.03 1.03 0.0 0.00 0.0<	Tallow Creek	2336	3129	3198	13.1	84.3	0	0.04	0.41	0	0.63	2.58	0	21.66	0	0	0	1.80	
Sahy Lagon 0 0 0 7.6 7.6 7.6 0 0.2 0 0.36 0.36 0.22.9 0 0 0 Jerusalem Creek 12 13 125.5 127.7 10 0.37 0.38 0 6.04 6.34 6.34 9.9 0.38 78.2 10.5 0 0.6 0.6 0.6 6.04 6.34 9.9 0.38 78.2 10.5 0.14 0 <td< td=""><td>Broken Head Creek</td><td>362</td><td>348</td><td>284</td><td>4.0</td><td>21.4</td><td>0</td><td>0.01</td><td>0.05</td><td>0</td><td>0.19</td><td>0.48</td><td>0</td><td>9.07</td><td>0</td><td>0</td><td>0</td><td>na</td><td></td></td<>	Broken Head Creek	362	348	284	4.0	21.4	0	0.01	0.05	0	0.19	0.48	0	9.07	0	0	0	na	
Evanse Time 1393 1495 1277 16.29 943.5 12.3 0.48 1.26 3.0 7.84 12.90 13.9 11.65 0 3.38 0 Lensalen 10 13 13 125.5 43161.8 9739.6 11.4 12.78 302.36 9.9 30.38 76254 10.56 0.18 Lake Arragan 0 0 21.4 21.5 0 0.66 0 10.3 10.3 0 1.06 0.07 0 1.729 17.5 0 8.20 0 0 0.07 Wold Work 280 2.94 655.2 598.5 0 1.65 0.77 0 2.26 2.37 0 9.22 0 0 0.07 Wold Work 280 304 353 3.47 17.17 0 0.22 2.25 5.80 0 5.92 4.0 0 0.04 0 0.04 0 0.04 0 0.	Richmond River	102164	102481	105296	16235.9	227541.1	65.8	48.11	370.01	3.8	781.73	3448.23	13.9	91.65	94499	42.33	0.21	na	7.2
Jerusalen Creek 12 13 13 125 127 0 0.38 0.38 0 6.4 6.34 0 9485 0 0.14 0 Clerence River 5045 5101 5225 43161.8 9739.6 11.4 127.8 93927 3.1 2078.6 927.8 9.9 0.30.3 7.6254 1.056 0.18 Lake Arragan 0 0 0 0 21.4 21.5 0 0.06 0.06 0 1.03 1.03 0.106 0 0.0 0 0 0 Sandon River 5 3.3 6 359.2 385.3 0 0.011 0.11 0 1.77 1.3 0 8.00 0 0.29 0 Sandon River 280 294 244 558.2 598.5 0 1.65 1.77 0 26.87 28.7 0 8.20 0 0 0.018 Station Creek 0 0 0 1 75.9 77.2 0 0.22 0.21 0 3.66 3.73 0 14.63 0 0 0.0 Pipe Clarg Creek 299 304 353 3.4 13.0 0 0.01 0.07 0 0.16 0.43 0 4055 0 0 0 Pipe Clarg Creek 299 304 353 3.4 13.0 0 0.01 0.07 0 0.16 0.43 0 4055 0 0 0 Pipe Clarg Creek 488 516 611 16.6 338.4 0 0.02 0 0.02 2.50 0 0.53 2.45 0 0.05 0 0 0 Pipe Clarg Creek 488 516 611 16.6 338.4 0 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.05 0.05 0.00 0 Data Maragan 2.00 0 0.02 0.00 0.02 0.00 0.00 0.00 0	Salty Lagoon	0	0	0	7.6	7.6	0	0.02	0.02	0	0.36	0.36	0	2.29	0	0	0	na	(
Clarence River 5054 51301 52825 43161.8 97339.6 11.4 12.78 30.8 321.36 9.9 30.38 78254 10.56 0.18 Cakora Lagoon 97 94 83 36.8 38.4 0 0.11 0 1.79 1.83 0 8.00 0 0.29 0 Sandon River 28 294 248 558.2 598.5 0 1.65 1.77 0 2.837 0 9.22 0	Evans River	1393	1485	1277	162.9	343.5	12.3	0.48	1.26	3.0	7.84	12.90	13.9	11.65	0	3.38	0	na	(
Clarence River 5054 51301 5282.5 43161.8 97339.6 11.4 12.78 30.8 321.36 9.9 30.38 76254 10.56 0.18 Cakora Lagoon 97 94 83 36.8 38.4 0 0.110 0 1.729 1.759 0 8.20 0 0.07 Wooli Wool River 280 294 248 558.2 598.5 0 1.65 1.77 0 2.8.37 0 9.22 0	Jerusalem Creek	12	13	13	125.5	127.7	0	0.37	0.38	0	6.04	6.34	0	19.85	0	0.14	0	na	(
Lake Arragan 0 0 21.4 21.5 0 0.66 0.0 1.03 1.03 0.16 0.0 0 0 Sandon River 5 33 6 359.2 365.3 0 1.66 0.77 0 22.837 0 9.22 0 0.01 Station Creek 0 0 1 77.9 77.2 0 0.22 0.21 0 2.868 37.67 0 9.44 96 0 0 Crindi River 574 609 637 512.7 121.71 0 1.52 2.79 0 2.868 37.67 0 2.84 96 0 0 0 0 0 0 2.78 0 0.28 37.67 0 0.0 0 <th< td=""><td>Clarence River</td><td></td><td>51301</td><td>52825</td><td>43161.8</td><td></td><td>11.4</td><td>127.89</td><td>399.27</td><td>3.1</td><td>2078.16</td><td>3921.36</td><td>9.9</td><td>30.38</td><td>76254</td><td>10.56</td><td>0.18</td><td>na</td><td>7.20</td></th<>	Clarence River		51301	52825	43161.8		11.4	127.89	399.27	3.1	2078.16	3921.36	9.9	30.38	76254	10.56	0.18	na	7.20
Cakora Lagoon 97 94 83 36.8 36.4 0 0.11 0.17 1.83 0 8.00 0.00 0.02 Wooli Nvor 5 33 6 359.2 365.3 0 1.06 0.97 0 26.87 27.59 0 8.20 0 0 0.18 Station Creek 0 0 1.77 1.87 0 8.20 0 0.01 Ocinidi Niver 574 609 637 77.2 0 2.21 0 3.66 3.73 0 4.24 0 0.01 Deckloy Creek 299 304 3.35 3.4 1.30 0.01 0.07 0 0.68 0.03 0.03 0.46 0.03 0.05 0.14 0.07 0 0.14 0.44 0 0.05 0.14 0 0.03 1.46 0 0.04 0.05 0.14 0.07 1.86 0 0.03 0.05 0.01 0.0<																		na	(
Sandon Ner 5 33 6 359.2 366.3 0 1.06 0.97 0 17.29 17.59 0 8.20 0 0 0.07 Wooll Wooll Miker 20 0 1 75.9 77.2 0 0.22 0.21 0 3.66 3.73 0 14.63 0 0 0 Crindi River 574 609 637 51.27 127.1 0 1.52 2.79 0 2.46 3.66 3.73 0 44.63 0 0 0 0 0.22 2.29 0 0.46 3.4 0 0.07 0 0.16 0.43 0 44.63 0 0 0 0 0 0 0.07 0 0.16 0.43 0 44.55 0 0 0 0.07 1.64 0 0.80 1.44 0 0.02 0.43 0 0 0 0 0 0 0 0 <td>0</td> <td>97</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0.29</td> <td></td> <td>na</td> <td>(</td>	0	97											0		0	0.29		na	(
Wooli River 280 248 558.2 598.5 0 1.65 1.77 0 28.37 0 9.22 0 0 0 Corindi River 574 609 637 512.7 1217.1 0 1.52 2.79 0 24.68 37.67 0 2.8.44 96 0 0 0 Pipe Clay Creek 299 304 353 3.4 13.0 0 0.01 0.47 0 2.3.2 5.80 0 50.93 45 0.04 0 Darkum Creek 489 516 611 116.6 93.44 0 0.05 0.80 0 0.014 1.44 0 0.05 0 0 0 1.44 0 0.06 0 0 0 0 0 0 0.79 1.83 0 1.44.3 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0							•			-			-		•			na	0.1
Shation Creek 0 1 75.9 77.2 0 0.22 0.21 0.366 3.73 0 14.83 0 0 0 Orindi River 574 609 637 517.7 127.1 10 1.52 2.79 0 24.84 376 0 28.44 96 0 0 Pipe Carpek 299 304 353 1.4 0 0.14 0.07 0 24.84 37.6 0 28.44 96 0 0 Darkum Creek 498 516 611 16.6 939.4 0 0.05 0.80 0.80 11.46 0 20.65.7 8 0 0 0 Darkum Creek 643 682 62.2 1705.9 0 0.15 1.14 0 0.79 18.83 0 184.4 181 0.01 0 18.33 0 184.3 184.4 181 0.01 0 13.2 16 173.8		•					-						-		Ũ			na	0.1
Cohind River 574 609 637 512.7 1217.1 0 1.52 2.79 0 2.488 37.67 0 2.84.4 96 0 0 Pipe Clay Creek 293 344 333 31 644 48.2 311.4 0 0.14 0.47 0 0.23 5.80 0 50.92 45 0.04 0 Darkum Creek 498 516 611 166 93.94 0 0.19 1.68 0 0.80 1.14 0 226.5 88 0 0.00 Elit Top Point Creek 643 642 622 163 168.28 0 0.05 1.14 0 0.76 18.83 0 18.83 0 18.83 0 18.83 0 18.83 0 18.83 0 17.36 22.9 0 0 Brance Creek 1747 1829 1853 83.9 627.33 0 0.07 1.64 0							-								-	-		na	Č
Pipe Clay Creek 299 304 353 3.4 13.0 0 0.01 0.07 0 0.16 0.43 0 40.55 0 0 0 Darkum Creek 498 516 611 16.6 939.4 0 0.05 0.80 0 0.80 11.46 0 206.57 88 0 0 Woldgolga Lake 235 2367 2705 65.2 1705.9 0 0.19 1.88 0 0.26 1.49.9 0 227.00 5 0.00 0 Hearns Lake 643 682 623 16.3 142.8 0 0.02 1.83 0 184.34 181 0.01 0 Hearns Lake 643 682 623 16.3 142.8 0 0.07 1.64 0 1.09 2.70 0 1.53 0 0 0.07 1.64 0 1.09 2.70 0 1.53 0 0 0		0	-				•			-			-		0	Ū		na	0.00
Arrawara Creek 670 931 664 48.2 311.4 0 0.14 0.47 0 2.32 5.80 0 50.92 45 0.04 0 Darkum Creek 489 516 611 166 939.4 0 0.55 0.80 0 0.80 11.46 0 2.75 0 14.4.92 2.06 0.06 0 Woolgoolga Lake 643 682 768 821 5.3 424.8 0 0.02 0.35 0 0.26 4.99 0 227.00 5 0.00 0 Hearns Lake 643 682 2752 106.6 1397.2 0 0.02 1.34 0 0.79 18.83 0 97.32 127 0 0 Boambee Creek 543 2833 83.9 627.33 0 0.25 5.41 0 4.04 7.482 0 163.14 384 0.20 0 0 0 0.51 6.71 0 8.33 7.83 0 0.015 0 0 6.513 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>na</td><td>0.0</td></t<>							-			-						-		na	0.0
Darkum Creek 498 516 611 16.6 939.4 0 0.05 0.80 0 0.80 11.46 0 206;7 88 0 0 Woolgoolga Lake 2355 2367 2705 65.2 170.59 0 0.19 1.88 0 3.14 22.51 0 144.92 206 0.00 0 Hearns Lake 643 682 623 16.6 1897.2 0 0.32 1.86 0 5.13 22.06 0 79.32 127 0 0 Ocifis Creek 747 182.9 1853 38.9 6273.3 0 0.25 5.41 0 4.04 74.82 0 163.14 384 0.00 0 Bomble Creek 18473 18629 173.0 6890.3 0 0.51 6.71 0 8.33 87.83 0 91.13 8.4 0.00 0 0 0 0 0 0 0 <							•						•		-	•	-	1.49	(
Woolgopia Lake 2355 2367 2705 65.2 1705.9 0 0.19 1.68 0 3.14 22.51 0 14.492 206 0.06 0 Flat To Pinit Creek 643 682 623 16.3 1682.8 0 0.05 1.14 0 0.79 18.83 0 184.34 181 0.01 0 Pine Brush Creek 1745 2050 27.52 106.6 1397.2 0 0.32 1.86 0 5.13 22.06 0 79.32 127 0 0 Creek 17478 18229 1853 83.9 6273.3 0 0.25 5.41 0 4.04 74.82 0 163.14 384 0.20 0 Bomble Creek 873 9669 10325 17.0 689.3 0.05 0.16 2.61 0 4.04 74.82 0 163.14 384 0.20 0 Bomble Creek 8900 6409.2 173.0 649.3 273.2 0 0 0 0.25 5.1							•			-			-						
Flat Top Point Creek 685 768 821 5.3 424.8 0 0.02 0.35 0 0.26 4.99 0 227.00 5 0.00 0 Hearns Lake 643 682 623 163 1882.8 0 0.05 1.14 0 0.79 18.83 0 184.34 181 0.01 0 Moonee Creek 745 2050 2752 106.6 1397.2 0 0.32 1.86 0 0.79 18.83 0 18.34 18 0.00 0 Coffs Creek 747 18229 1853 83.9 6273.3 0 0.51 6.71 0 8.33 87.83 0 11.19 584 0.06 0 Bonville Creek 9609 9837 10840 543.9 2732.8 0 0.16 6.81 9.77.9 4.53.8 825 0.00 0 Bonville Creek 151 173 29.4 02.46 0.3							-			-			-			-		na	(
Heams Lake 643 662 623 16.3 1962.8 0 0.05 1.14 0 0.79 18.83 0 184.34 181 0.01 0 Moonee Creek 1745 2050 2752 106.6 1397.2 0 0.32 1.86 0 5.13 22.06 0 79.32 127 0 0 Dem Brush Creek 17478 18229 18593 83.9 627.33 0 0.25 5.41 0 4.04 74.82 0 163.14 384 0.06 0 Boambee Creek 8900 9837 10840 543.9 2732.8 0 1.61 6.86 0 26.19 67.79 0 45.30 825 0.00 0 Bellinger River 7689 7808 8000 6409.2 10616.4 2.6 18.9 30.75 0 1.35 1.07 2910 2.16 0.24 Dalhousie Creek 15 17 19 13.7 189.0 0 0.45 0 2.48 5.09 0.366 1.07<							•						•					1.63	(
Moonee Creek 1745 2050 2752 106.6 1397.2 0 0.32 1.86 0 5.13 22.06 0 79.32 127 0 0 Pine Brush Creek 17478 18229 1853 83.9 6273.3 0 0.07 1.64 0 1.09 27.02 0 1733.62 22.9 0 0 Boambee Creek 8873 9669 10325 173.0 6890.3 0 0.51 6.71 0 8.33 87.83 0 91.19 584 0.06 0 Bundageree Creek 151 153 147 32.4 62.8 0 0.10 0.29 0 1.56 2.58 0 1013.75 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>na</td> <td>(</td>							•						•					na	(
Pine Brush Creek 542 824 751 22.6 2417.8 0 0.07 1.64 0 1.09 27.02 0 1733.62 229 0 0 Coffs Creek 17478 18229 18593 83.9 6273.3 0 0.25 5.41 0 4.04 74.82 0 163.14 384 0.20 0 Bombee Creek 8900 9837 10840 543.9 2732.8 0 1.61 6.86 0 26.19 67.79 0 45.30 825 0.00 0 Bendlageree Creek 151 153 147 32.4 62.8 0 0.10 0.29 0.165 0.66 1.74 0 25.39 0 0 0 Dalhousie Creek 15 17 19 13.7 198.90 0 0.45 0.45 0.24 5.09 0 36.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							-						-					na	(
Coffs Creek17478182291859383.96273.300.255.4104.0474.820163.143840.200Boambee Creek8873966910325173.06890.300.516.7108.3387.83091.195840.060Bonnille Creek9900983710840543.92732.801.616.8602.51967.79045.308250.000Bundageree Creek15115314732.462.800.100.2901.562.5801013.75000Bellinger River7689780880006409.210616.42.618.9930.750.1308.59408.261.351.0729102.160.24Dalhousie Creek23726131551.5193.800.150.4502.485.09036.62000Nambucca River1172011756118914151.31379.99.412.3038.040.2138.833.9332.5341552.020.65Macleay River48308472514716016644.827315.212.349.3213.003.7801.421332.508.248.9420993.740.95South West Rocks Creek1394144814067.700.020.1501.173.97							•			-			-			Ũ		na	0.02
Boambee Creek 8873 9669 10325 173.0 6890.3 0 0.51 6.71 0 8.33 87.83 0 91.19 584 0.06 0 Bonwille Creek 9900 9837 10840 543.9 2732.8 0 1.61 6.86 0 26.19 67.79 0 45.30 825 0.00 0 Bundageree Creek 151 153 147 32.4 62.8 0 0.10 0.29 0 1.66 1.5 2.58 0 0 0 Dalhousie Creek 15 17 19 13.7 89.0 0 0.44 0.15 0 0.66 1.74 0 25.39 0 0 0 Oyster Creek 1295 1410 1582 294.0 2477.6 24.8 0.87 3.31 9.8 14.16 43.82 17.1 56.22 793 0.30 0 Nacleay River 11720 11756 11891 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> <td>na</td> <td>(</td>							•			-			•			•		na	(
Bonville Creek 9900 9837 10840 543.9 2732.8 0 1.61 6.86 0 26.19 67.79 0 45.30 825 0.00 0 Bundageree Creek 151 153 147 32.4 62.8 0 0.10 0.29 0 1.56 2.58 0 101.75 0 0 0 Bellinger River 7689 7808 8000 6409.2 10616.4 2.6 18.9 3.75 0.1 308.59 408.26 1.3 51.07 2910 2.16 0.24 Dalhousie Creek 15 17 19 13.7 89.0 0 0.15 0.45 0 2.48 5.09 0 3.62 0 0 0 Deep Creek 1295 1410 1582 294.0 247.76 24.8 0.87 3.31 9.8 365.88 3.9 32.53 4155 2.02 0.65 Macleay River 11720 1175							-			-			-				-	na	0.31
Bundageree Creek 151 153 147 32.4 62.8 0 0.10 0.29 0 1.56 2.58 0 1013.75 0 0 0 Bellinger River 7689 7808 8000 6409.2 10616.4 2.6 18.99 30.75 0.1 308.59 408.26 1.3 51.07 2910 2.16 0.24 Dalhousie Creek 15 17 19 13.5 51.5 193.8 0 0.04 0.15 0 0.66 1.74 0 25.39 0 0 0 Oyster Creek 1295 1410 1582 294.0 2477.6 24.8 0.87 3.31 9.8 14.16 43.82 17.1 56.22 793 0.30 0 Nambucca River 11720 11756 11891 4151.3 13792.9 9.4 12.30 38.04 0.2 199.88 361.42 1332.50 8.2 48.94 2099 3.74 0.95 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>na</td> <td>0.40</td>							-			-			-					na	0.40
Bellinger River 7689 7808 8000 6409.2 10616.4 2.6 18.99 30.75 0.1 308.59 408.26 1.3 51.07 2910 2.16 0.24 Dalhousie Creek 15 17 19 13.7 89.0 0 0.15 0 0.66 1.74 0 25.39 0 0 0 Oyster Creek 237 261 315 51.5 193.8 0 0.15 0.45 0 2.48 5.09 0 36.62 0 0 0 Deep Creek 1295 1410 1582 294.0 2477.6 24.8 0.87 3.31 9.8 14.16 43.82 17.1 56.22 793 0.30 0 Nambucca River 11720 11756 11891 4151.3 13792.9 9.4 12.30 38.04 0.2 199.88 365.88 3.9 32.53 4155 2.02 0.65 South West Rocks Creek 1194 1448 1406 7.8 29.7 0 0.2 0.15 0 1.17							•						-					na	0.01
Dalhousie Creek15171913.789.000.040.1500.661.74025.390000Oyster Creek23726131551.5193.800.150.4502.485.09036.620000Deep Creek129514101582294.02477.624.80.873.319.814.1643.8217.156.227930.300Nambucca River1172011756118914151.313792.99.412.3038.040.2199.88365.883.932.5341552.020.65Macleay River48308472514716016644.827315.212.349.32130.003.7801.421332.508.248.94209993.740.95South West Rocks Creek1194144814067.829.700.020.1500.380.9801.1800.320Saltwater Creek (Frederickton)14301679171524.3175.100.070.5101.001.5306.280000Kilick Creek28828426320.841.500.060.1501.001.5306.280000Kilick Creek93591783917.231.600.050.190							-			-			•		-	-	•	na	(
Oyster Creek23726131551.5193.800.150.4502.485.09036.62000Deep Creek129514101582294.02477.624.80.873.319.814.1643.8217.156.227930.300Nambucca River1172011756118914151.313792.99.412.3038.040.2199.88365.883.932.5341552.020.65Macleay River48308472514716016644.827315.212.349.32130.003.7801.421332.508.248.9420993.740.95South West Rocks Creek1194144814067.829.700.020.1500.380.9801.1800.320Saltwater Creek (Frederickton)14301679171524.3175.100.070.5101.173.97014.05000Korogoro Creek28828426320.841.500.060.1501.001.5306.280000Killick Creek93591783917.231.600.050.1900.831.5805.650000Hastings River36975388443976212447.126860.531.636.88105.41 <td< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>na</td><td>(</td></td<>	0																	na	(
Deep Creek129514101582294.02477.624.80.873.319.814.1643.8217.156.227930.300Nambuca River1172011756118914151.313792.99.412.3038.040.2199.88365.883.932.5341552.020.65Macleay River48308472514716016644.827315.212.349.32130.003.7801.421332.508.248.9420993.740.95South West Rocks Creek1194144814067.8273.512.349.32130.003.7801.421332.508.248.9420993.740.95Saltwater Creek (Frederickton)14301679171524.3175.100.020.1501.1800.200Korogoro Creek28828426320.841.500.060.1501.001.5306.28000Killick Creek93591783917.231.600.050.1900.831.560000Killick Creek93591783988.300.030.0400.420.3602.83000Hattings River36975388843976212447.126860.531.636.88105.415.6599.311073.15<										-					-	-		na	(
Nambucca River1172011756118914151.313792.99.412.3038.040.2199.88365.883.932.5341552.020.65Macleay River48308472514716016644.827315.212.349.32130.003.7801.421332.508.248.94209993.740.95South West Rocks Creek1194144814067.829.700.020.1500.380.9801.1800.320Saltwater Creek (Frederickton)14301679171524.3175.100.070.5101.001.5306.28000Korogoro Creek28828426320.841.500.060.1501.001.5306.28000Korogoro Creek93591783917.231.600.050.1900.831.5805.65000Golawah Lagoon888.88.300.030.0400.420.3602.83000Hastings River36975388443976212447.126860.531.636.88105.415.6599.311073.1515.038.73312696.851.25Cathie Creek531975469187273.6656.900.813.57013.1727.08<							-			-			•		Ũ	-	-	na	(
Macleay River 48308 47251 47160 16644.8 27315.2 12.3 49.32 130.00 3.7 801.42 1332.50 8.2 48.94 2099 3.74 0.95 South West Rocks Creek 1194 1448 1406 7.8 29.7 0 0.02 0.15 0 0.38 0.98 0 1.18 0 0.32 0 Saltwater Creek (Frederickton) 1430 1679 1715 24.3 175.1 0 0.07 0.51 0 1.17 3.97 0 14.05 0 0.02 0 Korogor Creek 288 284 263 20.8 41.5 0 0.06 0.15 0 1.00 1.53 0 6.28 0	Deep Creek	1295	1410	1582	294.0	2477.6	24.8	0.87	3.31		14.16	43.82	17.1		793	0.30		na	(
South West Rocks Creek 1194 1448 1406 7.8 29.7 0 0.02 0.15 0 0.38 0.98 0 1.18 0 0.32 0 Saltwater Creek (Frederickton) 1430 1679 1715 24.3 175.1 0 0.07 0.51 0 1.17 3.97 0 14.05 0 0 0 Korogoro Creek 288 284 263 20.8 41.5 0 0.06 0.15 0 1.00 1.53 0 6.28 0 <td>Nambucca River</td> <td>11720</td> <td>11756</td> <td>11891</td> <td>4151.3</td> <td>13792.9</td> <td>9.4</td> <td>12.30</td> <td>38.04</td> <td>0.2</td> <td>199.88</td> <td>365.88</td> <td>3.9</td> <td>32.53</td> <td>4155</td> <td>2.02</td> <td>0.65</td> <td>na</td> <td>8.13</td>	Nambucca River	11720	11756	11891	4151.3	13792.9	9.4	12.30	38.04	0.2	199.88	365.88	3.9	32.53	4155	2.02	0.65	na	8.13
Saltwater Creek (Frederickton) 1430 1679 1715 24.3 175.1 0 0.07 0.51 0 1.17 3.97 0 14.05 0 0 0 Korogoro Creek 288 284 263 20.8 41.5 0 0.06 0.15 0 1.00 1.53 0 6.28 0 0 0 Killick Creek 935 917 839 17.2 31.6 0 0.05 0.19 0 0.83 1.58 0 5.65 0 0 0 Goldawah Lagoon 8 8 8.8 8.3 0 0.03 0.04 0 0.42 0.36 0 2.83 0 0 0 Hastings River 36975 38884 39762 12447.1 2680.5 31.6 36.88 105.41 5.6 599.31 1073.15 15.0 38.73 31269 6.85 1.25 Cathie Creek 5319 7546 9187 273.6 655.0 0.06 0.46 0 1.317 27.08 3.45	Macleay River	48308	47251	47160	16644.8	27315.2	12.3	49.32	130.00	3.7	801.42	1332.50	8.2	48.94	20999	3.74	0.95	na	4.1
Korogoro Creek28828426320.841.500.060.1501.001.5306.28000Killick Creek93591783917.231.600.050.1900.831.5805.65000Goolawah Lagoon888.88.300.030.0400.420.3602.83000Hastings River3697538843976212447.12680.531.636.88105.415.6599.311073.1515.038.73312696.851.25Cathie Creek531975469187273.6656.900.813.57013.1727.0803.4501.370Duchess Gully6301511196821.5113.800.060.4601.033.410138.88300Camden Haven River7694839988891857.35295.405.5016.05089.43170.7405.4465270.650.94Manning River38597387873961015436.521756.85.145.74136.994.7743.241284.105.039.95776093.932.89	South West Rocks Creek	1194	1448	1406	7.8	29.7	0	0.02	0.15	0	0.38	0.98	0	1.18	0	0.32	0	na	(
Killick Creek 935 917 839 17.2 31.6 0 0.05 0.19 0 0.83 1.58 0 5.65 0 0 0 Goolawah Lagoon 8 8 8 8.8 8.3 0 0.03 0.04 0 0.42 0.36 0 2.83 0 0 0 Hastings River 36975 38884 39762 12447.1 26860.5 31.6 36.88 105.41 5.6 599.31 1073.15 15.0 38.73 31269 6.85 1.25 Cathie Creek 5319 7546 9187 273.6 656.9 0 0.81 3.57 0 13.17 270.8 3.45 0 0.0 Duchess Gully 630 1511 1968 21.5 113.8 0 0.06 0.46 0 1.03 3.41 0 138.88 3 0 0 Camden Haven River 7694 8399 8889 1857.3 5295.4 0 5.50 16.05 0 89.43 170.74 0	Saltwater Creek (Frederickton)	1430	1679	1715	24.3	175.1	0	0.07	0.51	0	1.17	3.97	0	14.05	0	0	0	na	(
Goolawah Lagoon 8 8 8 8.8 8.3 0 0.03 0.04 0 0.42 0.36 0 2.83 0 0 0 Hastings River 36975 38884 39762 12447.1 26860.5 31.6 36.88 105.41 5.6 599.31 1073.15 15.0 38.73 31269 6.85 1.25 Cathie Creek 5319 7546 9187 273.6 656.9 0 0.81 3.57 0 13.17 27.08 0 3.45 0 1.37 0 Duchess Gully 630 1511 1968 21.5 113.8 0 0.06 0.46 0 1.03 3.41 0 138.88 3 0 0 Camden Haven River 7694 8399 889 1857.3 5295.4 0 5.50 16.05 0 89.43 170.74 0 5.44 6527 0.65 0.94 Manning River 38597	Korogoro Creek	288	284	263	20.8	41.5	0	0.06	0.15	0	1.00	1.53	0	6.28	0	0	0	na	
Hastings River36975388843976212447.126860.531.636.88105.415.6599.311073.1515.038.73312696.851.25Cathie Creek531975469187273.6656.900.813.57013.1727.0803.4501.370Duchess Gully6301511196821.5113.800.060.4601.033.410138.88300Camden Haven River769483998891857.35295.405.5016.05089.43170.7405.4465270.650.94Manning River38597387873961015436.521756.85.145.74136.994.7743.241284.105.039.95776093.932.89	Killick Creek	935	917	839	17.2	31.6	0	0.05	0.19	0	0.83	1.58	0	5.65	0	0	0	na	(
Hastings River36975388843976212447.126860.531.636.88105.415.6599.311073.1515.038.73312696.851.25Cathie Creek531975469187273.6656.900.813.57013.1727.0803.4501.370Duchess Gully6301511196821.5113.800.060.4601.033.410138.88300Camden Haven River769483998891857.35295.405.5016.05089.43170.7405.4465270.650.94Manning River38597387873961015436.521756.85.145.74136.994.7743.241284.105.039.95776093.932.89	Goolawah Lagoon	8	8	8	8.8	8.3	0	0.03	0.04	0	0.42	0.36	0	2.83	0	0	0	na	(
Cathie Creek 5319 7546 9187 273.6 656.9 0 0.81 3.57 0 13.17 27.08 0 3.45 0 1.37 0 Duchess Gully 630 1511 1968 21.5 113.8 0 0.06 0.46 0 1.03 3.41 0 138.88 3 0 0 Camden Haven River 7694 8399 8889 1857.3 5295.4 0 5.50 16.05 0 89.43 170.74 0 5.44 6527 0.65 0.94 Manning River 38597 38787 39610 15436.5 21756.8 5.1 45.74 136.99 4.7 743.24 1284.10 5.0 39.95 77609 3.93 2.89		36975	38884	39762	12447.1	26860.5	31.6	36.88		5.6	599,31		15.0	38,73	31269	6.85	1.25	na	(
Duchess Gully 630 1511 1968 21.5 113.8 0 0.06 0.46 0 1.03 3.41 0 138.88 3 0 0 Camden Haven River 7694 8399 8889 1857.3 5295.4 0 5.50 16.05 0 89.43 170.74 0 5.44 6527 0.65 0.94 Manning River 38597 38787 39610 15436.5 21756.8 5.1 45.74 136.99 4.7 743.24 1284.10 5.0 39.95 77609 3.93 2.89																		1.56	3.70
Camden Haven River 7694 8399 8889 1857.3 5295.4 0 5.50 16.05 0 89.43 170.74 0 5.44 6527 0.65 0.94 Manning River 38597 38787 39610 15436.5 21756.8 5.1 45.74 136.99 4.7 743.24 1284.10 5.0 39.95 77609 3.93 2.89							-			-			-		-		-	na	0.1
Manning River 38597 38787 39610 15436.5 21756.8 5.1 45.74 136.99 4.7 743.24 1284.10 5.0 39.95 77609 3.93 2.89										-					-			na	5.0
							-			-								na	7.3
N PADDODODATELEAR DOS 757 1383 7798 7697 0 0.68 7.60 0 11.07 20.97 0 20.26 7.8 0 0	Khappinghat Creek	663	757	1383	229.8	469.2	0.1	0.68	2.60	4.7	11.07	20.92	0	20.25	48	0.55	2.03	na	1.5
																-	-	2.50	(

pre-tear pre-tear current pre-tear current pre-tear current pre-tear current brack Bitraction Bitra Bitraction<						LUau	Total Nitrog		sLoad	hosphoru	Total P	lids Load	pended Sol	Total Susp		Population		
Estany 1996 2001 2006 (by) <	epening	Aqua-																
Wallis Lake 1964 21502 22140 22057 463 7 301 2027 2.64 Smith Lake 918 1008 964 463.2 2.015 1.01 47.7 63.3 108.62 3.01 2.027 2.64 Myall River 3097 3711 37.728 1565.2 2.064.3 2.4 4.70 1.041 0.7 763.3 108.62 3.6 1.00 4.77 0.35 Torris Topic Simptime 1803.8 2.214.2 2.825.5 6.27.2 1184.2 0.0 1.56 5.0 2.0 0.223.3 145.00 1.73 0.0 2.34 0.4 0.15 1.6.1 115.02 1.2.5 1.2.5 2.2.4 0.0 0.2.2 3.4 0.4 3.5 1.2.5 1.2.5 2.5.9 1.2.5 2.5.9 1.2.5 2.5.9 1.2.5 2.5.9 1.0.0 0.0.2 1.4.4 1.4.6 1.1.5 0.0 0.0.5 1.0.4 0.0.5 1.0.5 1.2.5 2.5.9		culture			-									•				
Smith Lake 918 1008 994 60.7 146.4 0 0.15 7.4 0 2.44 5.35 0 0.53 0 0.76 Karuah River 2634 2289 2289 3289.4 4306.7 0 9.75 2.48 0.0 158.3 246.0 0 17.4 360.8 0.73 Tilligenry Creek 5626 6844 6320 527.1 1186 0 17.8 10 16 16.23 440.7 0.8 27.7 49898 0.28 Clarrock Lappon 30514 17.44 770 71.7 0 37.2 40.0 0.05 0.42 10 16.32 47.1 0.5 17.4 0 0 0.02 11.4 16.80 0.02 14.1 0 0.32 1.0 0 57.4 0 0 0 0.0 14.8 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </th <th>AHD) (t/yr/k</th> <th>(km²)</th> <th></th>	AHD) (t/yr/k	(km²)																
Myali River 3097 3711 3728 1982 20.4 4.70 0.71 76.33 198.2 3.6 1.00 4.77 0.35 Tilligerty Creak 5638 6884 6301 923.3 4.0 0.32 2.9 5.20 1981 3.7 1.15 0 0.73 Port Stephens 18039 221.71 23823 228813 9863.5 4.92 70.78 3.76 12.2 1150.22 20.72 14.88 16.0 0.73 42885 4.52 0.03 7.22 4.04 0.02 1.01 0.02 0.04 0.05 0.06 0.02 0.14 0.03 7.24 4.88 2.297 4.08 4.03 4.03 4.03 4.03 4.04 0.051 2.04 0.35 0.0 0.0 0.01 3.02 0.01 3.02 0.0 0.01 3.02 0.01 3.02 0.01 3.02 0.01 3.02 0.01 3.02 0.01 3.02 0.01	na 5 1.99 5	3.81 0																
Karban River 2834 2889 32894 4306.7 0 9.75 24.88 0 158.38 246.09 0 17.43 3808 0.73 Port Skiphens 16039 22174 23825 527.2 1184.2 0 0.53 12.9 52.0 19.81 7.15 0 0.29 Gierrook Lapton 8077 1187 116.2 0.0 0.54 0.10 0.22 3007.22 3007.22 40.48 7.74 40.08 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.25 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.24 0.0 0.0 0.0 0.04 0.02 0.64 0.02 0.64 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04<	na 3	0.28																
Tilligarry Creek 568 6684 6320 108.0 953.3 4.0 0.32 2.0 2.9 5.0 19.81 3.7 1.15 0 0.78 Hunter River 30279 311283 328383 23884 96658.5 49.2 70.78 12.6 1150.22 307.22 34.8 72.72 48985 18.65 Clemrock Lagoon 38054 7.414 767.7 14.0 0.02 0.42 2.46 0.71.2 2.86 0.77.2 48.8 1.25 2.87 40.30 Clemrock Lagoon 138012 1442.3 10.87 119.7 422.3 0.40 0.32 0.77.6 14.15 0. 77.4 0.0 0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	na 3	1.20																
Pard Supplens 10039 22174 23825 527.2 1184.2 0 1.56 5.10 0 2.5.38 45.20 0 0.37 0 0.29 Glemock Lagoon 8054 7414 7670 17.0 73.2 0 0.62 0.62 20.70 38.7 70.6 1.52 2907 40.3 50.6 1.62 10.52 307.7 40.0 0.66 0.54 0.72 0 54.44 0 0 Monee Besch Cheek 14 16 11.2 16.2 0 0.02 0.14 0 0.52 17.0 77.74 0 0 0.00 1.86 0 1.86 0 0.66 51.41 0 1.86 0 0.01 1.82 2.00 0.68 2.27 0 0.50 0.01 0.02 0.04 0.12 2.88 0 0.01 0.02 0.04 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.01	na 3	1.20				-			-			-						
Hunter Niver 302799 311298 328383 2388.1 9663.5 45.2 77.6 12.6 110.22 307.72 34.8 77.27 408985 18.65 Clenrock Lagoon 136012 144238 150876 119.67 4823.4 0.4 3.57 16.34 0.3 57.62 141.51 0.5 1.25 2.00 0.05 0.42 0.4 0.32 1.70 0 75.74 0 0 Moone Beach Creek 4 3 2 6.7 100.6 0.03 0.04 0.52 0 0.32 1.70 0 75.74 0 0 Uagerah Lake 0.070 125.6 12.04 0.01 1.65 18.0 0.10 1.65 18.0 0 1.42 18.6 0 0.01 1.65 18.0 0 1.25 1.03 0.01 1.65 1.03 1.03 1.01 1.406 1.25 1.03 0 0.01 1.55 1.19 1.01 <t< td=""><td>na 3</td><td>8.79</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	na 3	8.79																
Clemock Lagoon 8054 7414 7670 17.0 73.2 0 0.42 0 0.42 2.46 0 47.13 0 0 Lake Macquarie 136012 144238 10561 1196.7 4823.4 0.03 0.06 0.57.62 117.10 0 75.74 0 0 0.04 0.02 0.14 0 0.02 0.14 0 0.02 0.14 0 0.02 1.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 <td< td=""><td>na 5</td><td>0.73</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td></td<>	na 5	0.73										-						•
Lake Macquaine 13012 144238 150376 11867 44234 0.4 4325 16.34 0.3 57.62 141.51 0.5 1.25 2597 40.03 Moonee Beach Creek 4 3 2 6.7 1986 0 0.03 0.06 0 0.54 0.77 0 757.74 0 0 Tuggerah Lake 102750 17062 12509 1382 2787 0 0.05 0.65 15.94 0 3.95 0 0 Terngal Lagoon 4096 4502 4521 12.6 60.4 0 0.04 0.52 0 0.85 15.9 0 0.05 0.01 1.02 2.88 0 0.41 0.75 1.53 0 4.22 0 0 0 0.05 0.07 0.15 1.03 0 0.26 1.02 2.1 918.10 1.35 1.25 7.83 0.02 0.02 1.12 1.12.7 65.5 15.20	na	0.22																
Middle Camp Creek 134 146 112 16.2 0 0.33 0.06 0 0.54 0.72 0 54.48 0 0 Tuggerah Lake 102750 11706 25099 1382.3 7245.8 0 0.14 0 0.32 0 757.74 0 158 29962 0.85 Teringal Lagoon 8219 9145 9987 14.2 85.8 0 0.04 0.52 0 0.68 2.97 0 10.50 9 0.01 Cockrone Lake 1408 1651 177.8 15.7 37.0 0 0.065 0.40 0 0.75 1.53 0 4.64 2.5 1.03 39 768222 2.8.3 0 0.04 0 0.26 0.11 0.56.1 11.81 0.04 0.02 0.68 1.77 0 0.12 10.42 10.43 0 0.02 0.04 0.02 0.05 1.02 11.81 356.1 10.29 10.23 10.23 10.42 10.23 10.44 0.0 0.02 0.04	na	ő	•															
Moone Beach Creek 4 3 2 6.7 109.6 0 0.20 0.14 0 0.32 1.70 0 7.74 0 0 Wamberal Lagoon 4096 4502 4521 12.6 60.4 0 0.651 2.94 0 1.55 0 0.55 Avoca Lake 6245 7031 6445 2.11 81.5 0 0.66 0.04 0 0.75 1.53 0 4.428 0 0 Cocktrone Lake 1408 1651 17.73 5.77 7.0 0 0.5 0.9 0.75 5.51 1.39 0 4.42 0 0.26 1.22 1.02 3.39 Pittwater 25776 25737 26450 5.74 158.7 0 0.41 0.0 0.66 3.43 0 1.02 1.042 1.05 1.03 0 1.01 0 0.06 1.03 0 0.10 0 0.00 0.02	na	Ő																
Tuggeral Lake1072501170621250991382.37245.804.1016.80066.5515.94901.98299620.85Wamberal Lagoon6214521412.660.400.040.3200.66.5515.94901.98299620.85Avoca Lake62457031649521.181.500.060.400.100.751.5304.64250Derisbane Water92774983051009924.52982.100.751.5304.642500Brisbane Water77282885840290803210880.57373.312.765.65162.092.1919.10153.61125.513.997822228.32Britwater72528057372645575.7500.170.4902.764.8400.2612.210.4300.00Deriwhy Lagoon2652267772671112.4125.600.040.1800.661.7300.1000.000Middle Harbour Creek12595277802831918.2.500.040.5900.663.838.870.844.311.75De Why Lagoon26528272802831918.219.20.060.730.914.6604.744.2560.03Lane Cove River177459184335185		0	0															•
Wamberal Lagoon 4096 4502 4521 12.6 60.4 0.04 0.34 0 0.61 2.04 0 3.95 0 0 Avoca Lake 6245 7031 6495 21.1 81.5 0 0.06 0.40 0 1.02 2.88 0 4.28 0 0 Cockrone Lake 1408 1651 1.736 15.7 3.70 0 0.05 0.19 0.75 1.53 0 4.46 25 0 3.99 78322 28.32 0 11.81 34.08 0 1.25 13.99 7852 28.32 28.32 0 0.17 0.49 0 2.76 4.84 0 2.66 1.22 10.42 10.42 10.42 10.66 1.33 0 0.14 0.70 0 1.43 0.02 0 0.06 3.47 0 1.45 0 0.02 1.04 0.70 0 1.45 0 0.00 0.01 <	na 4	õ	-	-					-									
Terring Lagoon82199145998714.285.800.040.5200.682.97010.5090.01Cockone Lake14081651173615.737.000.050.1900.751.5304.64250Dirisbane Water9277493051000692.4292.191.11134.0801.2513.99768.2228.32Hawkesbury River7782968584029080397397.312.765.56162.092.191.911536.112.513.99768.2228.32Broken Bay9552101761045577.630.9200.441.060.338.8700.344311.75Dee Why Lagoon23632247772671112.4125.600.040.5900.603.4701.45.300.02Curl Curl Lagoon76565772880542.821.700.010.1300.140.7001.030000Mark Lagoon26552783728717132.777.71423.500.322.4003.371.4202.34970.36Lane Cove River1745918485518559131.2780.400.394.5406.322.62.408.823160.05Lane Cove River127555290837297.65		Ō										0						
Avoca Lake 6245 7031 6495 21.1 81.5 0 0.06 0.40 0 1.02 2.88 0 4.28 0 0 Brisbane Water 92774 93305 100969 245.2 962.1 0.73 5.32 0 11.81 34.08 0 1.25 12.0 3.39 Brisbane Water 25076 25737 26450 57.4 158.7 0 0.17 0.49 0 2.76 4.84 0 0.26 122 13.99 768.22 28.32 Pittwater 25076 25777 26451 77.6 309.2 0 0.17 0.49 0 2.76 4.84 0 0.26 11.25 11.16 3.4 4.31 1.75 Dee Why Lagoon 2382 27771 28819 182.5 0 0.01 0.13 0 0.14 0.70 0 0.30 0 0.32 2.64 0 2.34 97 0.36 <	1.20	0	0.01	9	10.50	0		0.68	0		0.04	0	85.8				8219	5
Brisbane Water 92774 98305 100690 245.2 962.1 0 0.73 5.32 0 11.81 34.08 0 1.25 12.0 33.39 Pitwater 25076 25737 26450 57.4 158.7 0 0.17 0.49 0 2.76 4.84 0 0.26 122 10.42 Broken Bay 9552 10176 10458 31.7 75.0 0 0.04 0.48 0 0.66 3.84 40 0.26 12.5 13.99 766.22 13.41 17.5 0 0.04 0.65 0 3.84 43.1 1.75 0 0.04 0.55 0 0.66 3.47 0 14.53 0 0.02 0.01 0.33 0 0.14 0.70 0 14.83 0 0.02 0.01 0.33 0.41 0.50 0.01 0.30 4.53 0.02 0.33 14.05 0 0.32 2.40 0		0		0		0			0			0						
Hawkesbury River778/298858/40290803219089.057.3475.710.765.65162.092.191.011536.1125.513.99768.22228.32Broken Bay955210176104813.775.000.040.1800.661.7300.1000.000Narrabeen Lagoon2363224777267112.4125.600.241.0603.838.87014.5300.02Curl Curl Lagoon7656772880542.821.700.010.1300.140.7014.5300.02Minly Lagoon7656772880542.821.700.010.1300.144.70010.8000Minly Lagoon72658272802831918.2500.232.4003.7114.2902.34970.36Lane Cove River1774591848351855913.12780.400.394.6406.5226.2408.2700.31Cooks River38626037801139059110.3127.4600.324.7404.904.75800.313.32.702.7.51710.04Georges River78659838137851544110.85110.7500.020.0210.7300.362.8.800P	2.50	0	0	25	4.64	0	1.53	0.75	0	0.19	0.05	0	37.0	15.7	1736	1651	1408	Cockrone Lake
Pittwater 25076 25737 26450 57.4 158.7 0 0.17 0.49 0 2.76 4.84 0 0.26 122 10.42 Broken Bay 9552 10176 10458 13.7 75.0 0 0.04 0.18 0 6.66 1.73 0 0.10 0 0.00 Narrabeen Lagoon 23632 24777 26711 12.4 125.6 0 0.04 0.59 0 0.60 3.47 0 14.53 0 0.02 Curl Cur Lagoon 7656 7728 8054 2.8 21.7 0 0.01 0.11 4.68 0 4.784 256 0.03 Middle Harbour Creek 12555 131401 137257 77.1 423.5 0 0.74 10.50 12.06 59.96 4.82 316 0.051 Parramatt River 36620 378001 25755 290837 287619 31.4 325.0 0.33 5.46	na	1.73	3.39	120	1.25	0		11.81	0	5.32	0.73	0	962.1	245.2	100969	98305	92774	Brisbane Water
Broken Bay 9552 10176 10458 13.7 75.0 0 0.04 0.18 0 0.66 1.73 0 0.10 0 0.00 Narrabeen Lagoon 20342 24777 26711 12.4 125.6 0 0.04 0.59 0 6.60 3.47 0 13.43 0 0.02 Curl Curl Lagoon 7656 7728 8084 2.8 21.7 0 0.01 0.13 0 0.14 0.70 0 10.80 0 0.02 Middle Harbour Creek 125952 131401 137257 77.1 423.5 0 0.23 2.40 0 3.71 14.29 0 2.34 97 0.36 Lane Cove River 177459 184935 131.2 780.4 0 0.39 4.54 0 3.31 151.8 8.71 0 3.45 0 3.45 0 0.43 7.55 171 0.04 0.55 2.55 2.9387	na 1	4.23	28.32	768222	13.99	25.5	1536.11	919.10	2.1	162.09	56.56	12.7	57397.3	19089.0	908032	858402	778298	Hawkesbury River
Narrabeen Jagoon 40947 42948 45575 79.6 309.2 0 0.24 1.06 0 3.83 8.87 0 3.84 431 1.75 Dee Why Lagoon 7856 7728 8054 2.8 21.7 0 0.01 0.13 0 0.60 3.47 0 14.63 0 0.02 Curl Curl Lagoon 7856 7728 8054 2.8 21.7 0 0.06 0.73 0 0.91 4.68 0 47.84 256 0.03 Middle Harbour Creek 12555 131401 137257 77.1 423.5 0 0.39 4.54 0 6.32 26.24 0 8.82 316 0.05 Paramatta River 58816 62037 287619 31.4 325.6 0 0.43 1.51 8.71 0 0.30 0 0.31 Cooks River 36660 37801 31027 12.47 10.04 10.51 8.	na 1	0	10.42	122	0.26	0	4.84	2.76	0	0.49	0.17	0	158.7	57.4	26450	25737	25076	Pittwater
Dee Why Lagoon 23632 24777 26711 12.4 12.6 0 0.61 0.347 0 14.53 0 0.02 Curl Curl Lagoon 2658 2728 8054 2.8 21.7 0 0.01 0.13 0 0.14 0.70 0 10.80 0 0 Middle Harbour Creek 125952 131401 137257 77.1 423.5 0 0.23 2.40 0 3.71 14.29 0 2.34 97 0.36 Lane Cove River 17749 184855 185959 131.2 780.4 0 0.39 4.54 0 6.32 26.24 0 8.36 722 0.16 Port Jackson 25755 290837 287518 31027.6 0 0.33 5.46 0 5.31 3.32.7 0 2.75 171 0.04 Georges River 366260 378001 390599 110.3 127.76 0 0.14 1.92 2.21	na 1	0	0.00	0	0.10	0	1.73	0.66	0	0.18	0.04	0	75.0	13.7	10458	10176	9552	Broken Bay
Curl Lagoon 7656 7728 8054 2.8 2.17 0 0.01 0.13 0 0.14 0.70 0 10.80 0 0 Manly Lagoon 26258 27280 28319 18.9 182.5 0 0.06 0.73 0 0.91 4.68 0 47.84 256 0.03 Middle Harbour Creek 125952 131401 137257 77.1 423.5 0 0.23 2.40 0 3.71 14.29 0 8.82 316 0.05 Paramata River 58816 620831 652176 250.5 1939.5 0 0.74 10.50 0 12.06 59.96 0 4.82 7.75 171 0.04 Georges River 366260 378001 390599 110.3 1274.6 0 0.33 5.46 0 5.31 33.27 0 7.75 171 0.04 Georges River 786595 838137 85154 101.85	1.42	0	1.75	431	3.84	0	8.87	3.83	0	1.06	0.24	0	309.2	79.6	45575	42948	40947	Narrabeen Lagoon
Many Lagoon 26258 27280 28319 18.9 18.5 0 0.06 0.73 0 0.91 4.88 0 47.84 256 0.03 Middle Harbour Creek 125952 131401 137257 77.1 423.5 0 0.23 2.40 0 3.71 14.29 0 2.34 97 0.36 Paramatta River 588316 620831 652176 250.5 1939.5 0 0.74 10.50 0 12.06 59.96 0 4.36 722 0.16 Cooks River 366260 378001 30599 110.3 127.6 0 0.32 47.43 0 49.04 475.98 0 1.84 34748 10.85 Botany Bay 107416 111048 10990 46.0 652.8 0 0.14 1.92 0 2.21 13.80 0 1.26 0 0.36 2.66 2.48 Port Hacking 61911 64338 66339 <td></td> <td>0</td> <td></td> <td>-</td> <td></td> <td>0</td> <td></td> <td></td> <td>-</td> <td>0.59</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Dee Why Lagoon</td>		0		-		0			-	0.59		0						Dee Why Lagoon
Middle Harbour Creek 125952 131401 137257 77.1 423.5 0 0.23 2.40 0 3.71 14.29 0 2.34 97 0.36 Lane Cove River 177459 184835 185959 131.2 780.4 0 0.39 4.54 0 6.32 26.24 0 8.82 316 0.05 Partamatta River 588316 620831 652176 250.5 1939.5 0 0.74 10.50 0 12.06 59.96 0 4.36 722 0.16 Port Jackson 257555 290837 287619 31.4 322.0 0 0.09 1.43 0 1.51 8.71 0 0.30 0 0.31 Gooks River 36650 37011 31027.6 0 3.02 47.43 0 49.04 475.98 0 18.48 34748 10.85 Botany Bay 107416 111048 10989 46.0 65.28 0 0.12 0 3.77 14.32 0 1.24 140 1.26 1.24 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Curl Curl Lagoon</td>		0							-			-						Curl Curl Lagoon
Lane Cove River1774591848351859591312780.400.334.5406.3226.2408.823160.05Parramatta River588316620831652176250.51939.500.7410.50012.0659.9604.437220.16Port Jackson257552908728761931.4322.000.091.4301.518.71000.3000.31Cooks River366260378001390599110.31274.603.324.743049.04475.98018.483474810.85Botary Bay107416111048110904.60662.800.141.9202.2113.8000.362662.48Vattamolla Creek0007.97.900.020.020.0380.3801.127.4600Vattamolla Creek93612459374.529.700.010.1000.210.730228.5800Stacky Creek93612459374.529.700.010.1000.210.730228.5800Balangans Creek15831636162710.659.600.030.210.511.490787.700Balangans Creek188919972019 <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0							-			-						
Paramatta River 588316 620831 652176 250.5 1939.5 0 0.74 10.50 0 12.06 59.96 0 4.36 722 0.16 Port Jackson 257555 290837 287619 31.4 325.0 0 0.09 1.43 0 1.51 8.71 0 0.30 0 0.31 Cooks River 366260 378001 390599 110.3 1274.6 0 0.33 5.46 0 5.31 33.27 0 27.75 171 0.04 Georges River 786595 838137 851544 1018.5 31027.6 0 3.02 47.43 0 49.04 475.98 0 18.48 34748 10.85 Botany Bay 107416 111048 110990 46.0 652.8 0 0.14 1.92 0 2.21 13.80 0 1.24 140 12.61 Wattamolia Creek 936 1245 937 4.5 29		0																
Port Jackson25755529083728761931.4325.000.091.4301.518.7100.3000.31Cooks River366260378001390599110.31274.600.335.4605.3133.27027.751710.04Georges River7865955831378515441018.531027.600.2247.43049.04475.9801.8483474810.85Botany Bay10741611104811099046.0652.800.141.9202.2113.8000.362662.48Port Hacking619116493866939202.8397.200.601.2509.7714.3201.2414012.61Wattamolla Creek93612459374.529.700.010.1000.210.730228.58000Hangares Creek93612459374.529.700.010.1000.210.730228.58000<	na 1	0				-			-			•						
Cooks River 366260 378001 390599 110.3 1274.6 0 0.33 5.46 0 5.31 33.27 0 27.75 171 0.04 Georges River 786595 638137 851544 1018.5 31027.6 0 3.02 47.43 0 49.04 475.98 0 18.48 34748 10.85 Botany Bay 107416 111048 66939 202.8 397.2 0 0.02 0 9.77 14.32 0 1.24 140 12.61 Watamolla Creek 0 0 0 7.9 7.9 0 0.02 0.02 0.38 0.38 0.31 32.47 0 228.58 0 0 Stanwell Creek 484 534 520 14.4 41.1 0 0.04 0.10 0 0.69 1.17 0 132.47 263 0 Vaodlands Creek 1583 1636 1627 10.6 59.6 0 0.03 0.14 0 0.44 1.02 0 285.00 0 0		0				-						-						
Georges River7865958381378515441018.531027.603.0247.43049.04475.98018.483474810.85Botany Bay10741611104811099046.0652.800.141.9202.2113.8000.362662.48Port Hacking619116493866939202.8397.200.601.2509.7714.3201.2414012.61Wattamolla Creek93612459374.529.700.010.1000.210.730228.5800Stanwell Creek48453452014.441.100.040.1000.691.170132.472630Flanagans Creek15831636162710.659.600.030.2100.441.020285.0000Woodlands Creek8368699029.128.200.030.1400.441.020285.0000Slacky Creek18991997201916.672.800.050.3400.802.230448.15000Bellambi Cally72127606812837.8360.000.111.1601.828.14046.9000Towradgi Creek114481162511660 <td< td=""><td></td><td>0</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		0				-			-			-						
Botany Bay10741611104811099046.0652.800.141.9202.2113.8000.362662.48Port Hacking619116493866939202.8397.200.601.2509.7714.3201.4414012.61Wattamolla Creek93612459374.529.700.010.1000.210.730228.5800Stanwell Creek48453452014.441.100.040.1000.691.170132.472630Flanagans Creek15831636162710.659.600.030.2100.511.490285.0000Woodlands Creek8368699029.128.200.030.1400.441.020285.0000Bellambi Gully72127606812837.8360.000.111.1601.828.14046.9000Bellambi Lake275727962738.744.300.383.3106.1719.550176.0500Fairy Creek30264305073037212.82629.300.383.3106.1719.550176.0500Fairy Creek30264305073037212.21304.70<	na	0				-			-			-						
Port Hacking619116493866939202.8397.200.601.2509.7714.3201.2414012.61Wattamolla Creek0007.97.900.020.0200.380.38011.5600Hargraves Creek93612459374.529.700.010.1000.210.730228.5800Stanwell Creek48453452014.441.100.040.1000.691.170132.472630Flanagans Creek15831636162710.659.600.030.2100.511.490787.07000Woodlands Creek8368699029.128.200.030.1400.441.020285.00000Slacky Creek18991997201916.672.800.050.3400.802.230448.150000Bellambi Gully72127606812837.8360.000.111.1601.828.14046.9000000Towradgi Creek11448116251166061.8307.000.181.4502.988.980215.38140000000	na	2.16																
Wattamolla Creek 0 0 7.9 7.9 0 0.02 0.02 0 0.38 0.38 0 11.56 0 0 Hargraves Creek 936 1245 937 4.5 29.7 0 0.01 0.10 0 0.21 0.73 0 228.58 0 0 Stanwell Creek 484 534 520 14.4 41.1 0 0.04 0.10 0 0.69 1.1.7 0 132.47 263 0 Woodlands Creek 1583 1636 1627 10.6 59.6 0 0.03 0.21 0 0.51 1.49 0 78.70 0 0 0 Woodlands Creek 836 869 902 9.1 28.2 0 0.03 0.44 0 0.448.15 0 0 0 0 0 0 0 0 0 0 0 0.80 2.23 0 448.15 0 0	na	0.51							-			-						, ,
Hargraves Creek93612459374.529.700.010.1000.210.730228.5800Stanwell Creek48453452014.441.100.040.1000.691.170132.472630Flanagans Creek15831636162710.659.600.030.2100.511.490787.0700Woodlands Creek8368699029.128.200.030.1400.441.020285.0000Slacky Creek18991997201916.672.800.050.3400.802.230448.1500Bellambi Gully72127606812837.8360.000.111.1601.828.140470.71260Bellambi Lake2757279627398.744.300.030.2600.421.44046.9000Towradgi Creek11448116251166061.8307.000.181.4502.988.980215.381400Allans Creek393284452341506251.21304.700.746.17012.1039.46033.8900Lake Illawarra803648368885640654.23922.40<	na 0	0							-			-						
Stanwell Creek48453452014.441.100.040.1000.691.170132.472630Flanagans Creek15831636162710.659.600.030.2100.511.490787.0700Woodlands Creek8368699029.128.200.030.1400.441.020285.0000Slacky Creek1891997201916.672.800.030.2600.421.440448.1500Bellambi Gully72127606812837.8360.000.111.1601.828.140470.71260Bellambi Lake2757279627398.744.300.030.2600.421.44046.9000Towradgi Creek11448116251166061.8307.000.181.4502.988.980215.381400Allans Creek393284452341506251.21304.700.746.17012.1039.4603.8900Port Kembla3747 no data337019.2144.500.060.6400.933.9702.8900Lake Illawarra803648368885640654.23922.401.94 </td <td></td> <td>0</td> <td>•</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>•</td> <td>-</td> <td></td>		0	•	-		-			•			-				•	-	
Flanagans Creek 1583 1636 1627 10.6 59.6 0 0.3 0.21 0 0.51 1.49 0 787.07 0 0 Woodlands Creek 836 869 902 9.1 28.2 0 0.03 0.14 0 0.44 1.02 0 285.00 0 0 Slacky Creek 1899 1997 2019 16.6 72.8 0 0.05 0.34 0 0.44 1.02 0 285.00 0 0 Bellambi Gully 7212 7606 8128 37.8 360.0 0 0.11 1.16 1.82 8.14 0 470.71 26 0 Bellambi Lake 2757 2796 2739 8.7 44.3 0 0.03 0.26 0 0.42 1.44 0 46.90 0 0 Fairy Creek 30264 30507 30372 128.2 629.3 0 0.38 3.31 0 6.17 19.55 0 176.05 0 0 0 Al		0	-	-		Ũ												
Woodlands Creek 836 869 902 9.1 28.2 0 0.03 0.14 0 0.44 1.02 0 285.00 0 0 Slacky Creek 1899 1997 2019 16.6 72.8 0 0.05 0.34 0 0.80 2.23 0 448.15 0 0 Bellambi Gully 7212 7606 8128 37.8 360.0 0 0.11 1.16 0 1.82 8.14 0 470.71 26 0 Bellambi Lake 2757 2796 2739 8.7 44.3 0 0.03 0.26 0 4.44 0 470.71 26 0 Towradgi Creek 11448 11625 11660 61.8 307.0 0 0.18 1.45 0 2.98 8.98 0 215.38 140 0 Fairy Creek 30264 30507 30372 128.2 629.3 0 0.74 6.17		0	•			Ũ						-						
Slacky Creek 1899 1997 2019 16.6 72.8 0 0.05 0.34 0 0.80 2.23 0 448.15 0 0 Bellambi Gully 7212 7606 8128 37.8 360.0 0 0.11 1.16 0 1.82 8.14 0 470.71 26 0 Bellambi Lake 2757 2796 2739 8.7 44.3 0 0.03 0.26 0 0.42 1.44 0 46.90 0 0 Towradgi Creek 11448 11625 11660 61.8 307.0 0 0.18 1.45 0 2.98 8.98 0 215.38 140 0 Fairy Creek 30264 30507 30372 128.2 629.3 0 0.38 3.31 0 6.17 19.55 0 176.05 0 0 Allans Creek 39328 44523 41506 251.2 1304.7 0 0.74 6.17 0 12.10 39.46 0 33.89 0 0 0	na na	0	•	-		-						-						
Bellambi Gully 7212 7606 8128 37.8 360.0 0 0.11 1.16 0 1.82 8.14 0 470.71 26 0 Bellambi Lake 2757 2796 2739 8.7 44.3 0 0.03 0.26 0 0.42 1.44 0 46.90 0 0 Towradgi Creek 11448 11625 11660 61.8 307.0 0 0.18 1.45 0 2.98 8.98 0 215.38 140 0 Fairy Creek 30264 30507 30372 128.2 629.3 0 0.38 3.31 0 6.17 19.55 0 176.05 0 0 Allans Creek 39328 44523 41506 251.2 1304.7 0 0.74 6.17 0 12.10 39.46 0 3.89 0 0 Lake Illawarra 80364 83688 85640 654.2 3922.4 0 1.94	na	0	-	-					-									
Bellambi Lake2757279627398.744.300.030.2600.421.44046.9000Towradgi Creek11448116251166061.8307.000.181.4502.988.980215.381400Fairy Creek302643050730372128.2629.300.383.3106.1719.550176.0500Allans Creek393284452341506251.21304.700.746.17012.1039.46033.8900Port Kembla3747 no data337019.2144.500.060.6400.933.9702.8900Lake Illawarra803648368885640654.23922.401.9412.91031.50100.4602.8316380.16Elliott Lake13103145691586420.0115.600.060.7100.964.07050.5600Minnamurra River508049535067371.42342.101.107.35017.8846.07030.049380.14		0							-									
Towradgi Creek11448116251166061.8307.000.181.4502.988.980215.381400Fairy Creek302643050730372128.2629.300.383.3106.1719.550176.0500Allans Creek393284452341506251.21304.700.746.17012.1039.46033.8900Port Kembla3747 no data337019.2144.500.060.6400.933.9702.8916380.16Lake Illawarra803648368885640654.23922.401.9412.91031.50100.4602.8316380.16Elliott Lake13103145691586420.0115.600.060.7100.964.07050.5600Minnamurra River508049535067371.42342.101.107.35017.8846.07030.049380.14		0																
Fairy Creek 30264 30507 30372 128.2 629.3 0 0.38 3.31 0 6.17 19.55 0 176.05 0 0 Allans Creek 39328 44523 41506 251.2 1304.7 0 0.74 6.17 0 12.10 39.46 0 33.89 0 0 Port Kembla 3747 no data 3370 19.2 144.5 0 0.06 0.64 0 0.93 3.97 0 2.89 0 0 Lake Illawarra 80364 83688 85640 654.2 3922.4 0 1.94 12.91 0 31.50 100.46 0 2.83 1638 0.16 Elliott Lake 13103 14569 15864 20.0 115.6 0 0.06 0.71 0 9.06 4.07 0 50.66 0 0 Minnamurra River 5080 4953 5067 371.4 2342.1 0 1.10 7.35 0 17.88 46.07 0 30.04 938 0.14	1.60	0	0	•		0			0			•						
Allans Creek393284452341506251.21304.700.746.17012.1039.46033.8900Port Kembla3747 no data337019.2144.500.060.6400.933.9702.8900Lake Illawarra803648368885640654.23922.401.9412.91031.50100.4602.8316380.16Elliott Lake13103145691586420.0115.600.060.7100.964.07050.5600Minnamurra River508049535067371.42342.101.107.35017.8846.07030.049380.14		0	Ũ			•			-			-						
Port Kembla3747 no data337019.2144.500.060.6400.933.9702.8900Lake Illawarra803648368885640654.23922.401.9412.91031.50100.4602.8316380.16Elliott Lake13103145691586420.0115.600.060.7100.964.07050.5600Minnamurra River508049535067371.42342.101.107.35017.8846.07030.049380.14	na	0	•	-		-			•			•						
Lake Illawarra803648368885640654.23922.401.9412.91031.50100.4602.8316380.16Elliott Lake13103145691586420.0115.600.060.7100.964.07050.5600Minnamura River508049535067371.42342.101.107.35017.8846.07030.049380.14		0	-	-		0												
Elliott Lake 13103 14569 15864 20.0 115.6 0 0.06 0.71 0 0.96 4.07 0 50.56 0 0 Minnamurra River 5080 4953 5067 371.4 2342.1 0 1.10 7.35 0 17.88 46.07 0 30.04 938 0.14	0.88 5	Ő							-									
Minnamurra River 5080 4953 5067 371.4 2342.1 0 1.10 7.35 0 17.88 46.07 0 30.04 938 0.14		Õ							-			-						
	na 0	Ő	-			-						-						
Spring Greek 1012 1093 1241 14.9 38.2 0 0.04 0.27 0 0.72 1.91 0 37.00 0 0	na	Õ	0	0	37.00	Ő	1.91	0.72	Õ	0.27	0.04	Ő	38.2	14.9	1241	1093	1012	Spring Creek
Munna Munnora Creek 772 778 777 8.7 21.1 0 0.03 0.18 0 0.42 1.23 0 308.44 0 0		0	0	0		0												1 0
Werri Lagoon 962 1321 1316 45.9 94.7 0 0.14 0.70 0 2.21 5.58 0 39.37 0 0		0	0	0		0			0		0.14	0				1321		
Crooked River 1410 1559 1635 64.0 175.8 0.6 0.19 1.32 0.0 3.08 9.83 0.3 38.79 20 0		Ő	-	-		-			-			-						J
Shoalhaven River 41413 44537 46607 9428.8 16858.2 23.6 27.94 80.52 9.5 453.98 775.22 12.4 26.40 355487 55.18		1.85																
Wollumboola Lake 1064 1100 1039 62.9 78.6 0 0.19 0.29 0 3.03 3.66 0 0.58 0 0		0																
Currarong Creek 266 243 228 20.3 24.4 0 0.06 0.08 0 0.98 1.12 0 32.61 0 0.20	na	0	0.20						0									
Cararma Creek 4 2 2 8.4 8.8 0 0.02 0.03 0 0.40 0.43 0 0.18 0 0		0		0		0			0			0						
Wowly Gully 511 777 1001 8.5 15.7 0 0.03 0.07 0 0.41 0.63 0 3.87 0 0		0	0	0		0									1001		511	

		Population		Total Susp		ids Load		nosphorus	s Load		Total Nitrog	jen Load						
				Diffuse	Diffuse		Diffuse	Diffuse		Diffuse			Areal		-	Aqua-	• p •	Fish
				pre-clear	current		pre-clear	current		pre-clear	current	•••	load		Structures	-	levels (m	catch
Estuary Callala Creek	1996 1142	2001 1413	2006 1437	(t/yr)	(t/yr) 50.8	STP (t/yr)	(t/yr) 0.08	(t/yr) 0.21	STP (t/yr)		(t/yr) 3 1.99	STP (t/yr)	(t/yr/km ⁻) 307.49	(Ml/yr)	(km) 0	(km²)		(t/yr/km ²)
Callala Creek Currambene Creek	1142	1413	1437	26.9 346.0	50.8 572.7	0	1.03		0	1.30 16.66	28.25	0	307.49	96	0.28	•	na	0
Moona Moona Creek	1013	979	1005	346.0 49.1	572.7 99.4	0	0.15	3.15 0.52	0		28.25 4.29	0	30.60	96	0.28	0.01 0.01	na	0
Flat Rock Creek	1013	13	1005	49.1	99.4 15.6	0	0.15	0.52	0		4.29 0.73	0	52.18	0	0	0.01	na na	0
Captains Beach Lagoon	0	0	0	6.4	6.8	0	0.04	0.04	0		0.73	0	7.17	0	0	0	na	0
Telegraph Creek	0	0	0	8.6	9.0	0	0.02	0.02	0		0.33	0	81.69	0	0	0	na	0
Jervis Bay	1820	2146	1854	50.4	100.8	0	0.05	0.02	0		3.49	0	0.03	0	0.17	0.08	na	0.00
St Georges Basin	11351	13487	14652	615.7	872.7	0	1.82	3.90	0		41.54	0	1.02	148	1.72	0.00	na	0.00
Swan Lake	436	459	497	45.3	88.3	0	0.13	0.35	0		3.36	0	0.72	3	0	0	2.03	0
Berrara Creek	106	112	120	64.0	70.2	0	0.19	0.20	Ő		3.25	Ő	12.73	Ő	õ	Ő	na	(
Nerrindillah Creek	21	26	25	32.6	35.4	0	0.10	0.14	0		1.84	0	25.32	õ	0.04	0	na	(
Conjola Lake	1039	1090	1248	245.4	268.9	0.1	0.73	1.07	0.1	11.82	14.16	0.1	2.13	60	1.39	0.07	na	(
Narrawallee Inlet	1025	1289	1307	164.0	224.1	0.1	0.49	1.87	0.1		15.85	0.1	18.39	218	0.37	0.03	na	(
Mollymook Creek	715	909	1103	7.0	28.3	0	0.02	0.17	Ő		1.05	0 0	178.20	113	0	0.00	na	(
Millards Creek	2604	3157	3643	10.8	54.6	0	0.02	0.33	0		1.90	0	404.58	0	Ő	0	na	(
Ulladulla		no data	158	0.6	3.6	0	0.00	0.02	0		0.12	0	1.24	Ő	Ő	0	na	0
Burrill Lake	1942	2003	2245	127.5	219.3	0	0.38	1.69	0		13.41	0	3.24	77	0.32	0.01	1.10	(
Tabourie Lake	432	502	546	86.8	109.7	0	0.26	0.54	0		5.94	0	4.10	0	0.02	0.01	1.22	0
Termeil Lake	24	28	31	27.7	40.7	0	0.08	0.25	0		2.34	0	4.08	0	0.01	0	na	0.53
Meroo Lake	23	29	31	38.4	66.8	Ő	0.11	0.31	Õ		3.15	Õ	2.31	4	0.00	Ő	na	0.00
Willinga Lake	90	121	133	23.4	31.0	Ō	0.07	0.17	Ō		1.74	Ō	5.54	Ó	0	0	1.56	Ċ
Butlers Creek	14	18	17	2.8	17.3	0	0.01	0.10	0		0.58	0	21.68	0	0	0	na	C
Durras Lake	71	74	68	96.6	136.7	Ō	0.29	0.50	Ō		5.83	0	1.62	0	0	0	1.83	4.78
Durras Creek	54	53	48	8.0	9.6	0	0.02	0.04	0		0.46	0	21.65	0	0	0	na	C
Maloneys Creek	262	335	516	12.2	22.8	0	0.04	0.08	0		0.86	0	30.86	0	0	0	na	C
Cullendulla Creek	469	571	941	23.6	84.6	0	0.07	0.47	0	1.14	3.05	0	2.73	7	0	0.07	na	0
Clyde River	1274	1374	1316	2979.6	3159.1	0	8.83	10.58	0	143.46	158.12	0	9.29	2666	2.07	2.22	na	0.30
Batemans Bay	8220	8912	9627	41.3	160.8	0	0.12	0.79	0	1.99	5.32	0	0.15	0	0.09	0	na	C
Saltwater Creek (Rosedale)	69	90	101	5.2	11.8	0	0.02	0.10	0	0.25	0.69	0	321.12	13	0	0	na	C
Tomaga River	1135	1224	1181	144.9	258.9	0	0.43	1.20	0	6.98	11.03	0	8.15	47	0.55	0.05	na	C
Candlagan Creek	399	403	441	35.7	115.6	0	0.11	0.34	0	1.72	3.39	0	26.30	2	0	0	na	C
Bengello Creek	50	60	73	23.9	127.9	0	0.07	0.22	0	1.15	2.67	0	243.36	0	0	0	na	C
Moruya River	3694	3707	3682	2729.9	5016.6	3.5	8.09	14.40	0.9	131.44	184.17	0.9	34.58	5403	2.12	0.13	na	2.55
Congo Creek	247	306	314	64.5	135.1	0	0.19	1.01	0		7.60	0	65.72	167	0.65	0	na	8.37
Meringo Creek	32	39	45	12.1	24.1	0	0.04	0.15	0		1.16	0	15.99	0	0	0	na	0.16
Kellys Lake	12	15	25	3.7	9.7	0	0.01	0.06	0		0.42	0	6.59	0	0	0	na	C
Coila Lake	816	954	1094	135.3	183.8	0	0.40	0.90	0		9.28	0	1.37	8	0.00	0	1.81	9.75
Tuross River	912	974	1005	3850.2	5166.7	0	11.41	20.02	0		235.85	0	16.05	8072	0.91	1.24	1.80	C
Lake Brunderee	39	36	37	19.3	21.2	0	0.06	0.07	0		1.04	0	5.37	0	0	0	na	0
Lake Tarourga	5	5	5	17.3	18.4	0	0.05	0.05	0		0.88	0	2.67	0	0	0	na	(
Lake Brou	22	23	28	119.1	128.4	0	0.35	0.42	0		6.35	0	2.68	0	0	0	na	4.94
Lake Mummuga	719	788	798	74.5	86.5	0	0.22	0.28	0		3.97	0	2.44	5	0	0	1.19)
Kianga Lake	318	323	388	16.7	40.9	0	0.05	0.17	0		1.46	0	8.58	0	0.17	0	na	1.13
Wagonga Inlet	1416	1404	1252	247.3	335.6	0	0.73	1.29	0		15.02	0	2.17	101	0.79	0.91	na	0.00
Little Lake (Narooma)	860	930	832	5.2	18.2	0	0.02	0.11	0		0.63	0	6.51	21	0.04	0	na	0
Bullengella Lake	6	8	169	1.4	2.1	0	0.00	0.02	0		0.16	0	1.11	0	0	0	na	2.06
Nangudga Lake	93	113 228	168	18.3 68.5	77.9	0	0.05	0.51	0		3.21	0	5.38	0	0	0	na	2.96
Corunna Lake Tilba Tilba Lake	192 98	228 99	223 98	68.5 31.8	186.6 53.3	0	0.20 0.09	1.10 0.50	0		7.92 3.85	0 0	3.80 3.80	17 134	0	0	1.92 na	3.00 0.79
Little Lake (Wallaga)	98 17	99 17	98 17	31.8 2.8	53.3 6.8	0	0.09	0.50	0		3.85 0.38	0	3.80 3.33	134	0	0		0.79
	1252	1294	1396	2.8 662.1	6.8 2664.1	0		0.05 6.73	0		0.38 72.22	0	3.33 7.90		0.98	0.05	na 1.26	8.58
Wallaga Lake Bermagui River	1252 903	1294 979	1396	662.1 217.3	2664.1 618.6	0	1.96 0.64	6.73 2.19	0		72.22 20.73	0	7.90 10.43	1126 825	0.98	0.05	1.26 na	8.58
Baragoot Lake	903 12	979 14	1081	36.2	55.2	0	0.64	0.25	0		20.73	0	5.28	825 0	0.06	0.38	na na	0.89
	12	14	16	36.2 154.4	55.∠ 175.5	0	0.11	0.25	0		2.49 8.22	0	5.28 6.65	20	0	0		
Cuttagee Lake	15 286	16 306	19 304	154.4 475.2		0	0.46 1.41		0		8.22 36.61	0		20 1867	0	-	na	4.93
Murrah River	286		304 16	475.2 34.4	647.7 39.5	0	1.41 0.10	3.80	0		36.61 2.05	0	53.91 18.98	1867	0	0.00	na	0.90
Bunga Lagoon	13	16	10	34.4	39.5	0	0.10	0.16	0	1.65	2.05	0	10.98	0	0	0	na	Ľ

	Po	opulation		Total Susp	ended Sol	ids Load	Total Pl	nosphorus	s Load	•	Total Nitro	ogen Load						
				Diffuse	Diffuse		Diffuse	Diffuse		Diffuse	Diffuse		Areal			Aqua-	Opening	Fish
				pre-clear	current		pre-clear	current		pre-clear	current		load	Extraction	Structures	culture	levels (m	catch
Estuary	1996	2001	2006	(t/yr)	(t/yr)	STP (t/yr)	(t/yr)	(t/yr)	STP (t/yr)	(t/yr)	(t/yr)	STP (t/yr)	(t/yr/km ²)	(Ml/yr)	(km)	(km²)	AHD)	(t/yr/km ²)
Wapengo Lagoon	60	75	80	193.3	210.4	0	0.57	0.97	0	9.31	11.91		3.76	126	0.14	0.78	na	0.97
Middle Lagoon	28	34	34	70.8	102.7	0	0.21	0.51	0	3.41	5.33		10.53	1	0.20	0	na	5.19
Nelson Lagoon	5	6	7	75.0	77.3	0	0.22	0.23	0	3.61	3.73	0	3.12	0	0	0.29	na	0
Bega River	8189	8431	8824	3573.6	6139.3	3.4	10.59	32.37	1.6	172.06	302.24	3.2	92.37	45389	1.82	0.04	1.82	0
Wallagoot Lake	77	91	113	49.5	58.8	0	0.15	0.26	0	2.38	3.06	0	0.79	4	0.33	0	na	2.20
Bournda Lagoon	38	45	80	69.1	85.0	0	0.20	0.29	0	3.33	3.90		49.30	76	0.10	0	na	
Back Lagoon	1669	1875	1673	60.6	103.9	0	0.18	0.37	0	2.92	4.13	0	11.50	101	1.59	0	1.40	0
Merimbula Lake	2563	2833	2168	69.0	148.3	0	0.20	0.93	0	3.32	7.02	0	1.41	9	1.29	1.38	na	0.11
Pambula River	1528	1605	1749	591.0	692.9	0	1.75	3.13	0	28.46	37.04	0	8.50	790	1.41	1.00	na	0
Curalo Lagoon	2005	1836	1769	55.2	97.1	0	0.16	0.40	0	2.66	3.91	0	5.48	0	0.34	0	1.50	0.08
Shadrachs Creek	7	8	8	24.3	25.6	0	0.07	0.08	0	1.17	1.27	0	143.38	0	0	0	na	0
Nullica River	3	3	3	98.0	110.9	0	0.29	0.33	0	4.72	5.19	0	16.42	0	0	0	na	0
Boydtown Creek	1	1	1	7.1	9.3	0	0.02	0.05	0	0.34	0.52	0	31.71	0	0	0	na	0
Towamba River	377	440	379	1841.6	2045.4	0	5.46	8.65	0	88.67	110.43	0	57.70	1349	5.97	0.01	na	0
Fisheries Creek	0	0	0	12.8	13.1	0	0.04	0.04	0	0.62	0.64	0	12.09	0	0	0	na	0
Twofold Bay	1109	1160	1141	12.0	35.8	0	0.04	0.13	0	0.58	1.15	0	0.04	53	0.17	0.18	na	0
Saltwater Creek (Eden)	0	0	0	34.8	34.8	0	0.09	0.09	0	1.68	1.68	0	29.78	0	0	0	na	0
Woodburn Creek	0	0	0	25.8	25.8	0	0.07	0.07	0	1.24	1.24	0	24.80	0	0	0	na	0
Wonboyn River	73	64	9	633.8	638.3	0	1.88	1.78	0	30.51	31.09	0	8.43	14	0.21	0.54	na	0
Merrica River	0	0	0	104.2	104.2	0	0.31	0.28	0	5.01	5.01	0	40.93	0	0	0	na	0
Table Creek	0	0	0	27.3	27.3	0	0.07	0.07	0	1.31	1.31	0	23.59	0	0	0	na	0
Nadgee River	0	0	0	240.4	240.4	0	0.64	0.64	0	11.58	11.58	0	60.18	0	0	0	na	0
Nadgee Lake	0	0	0	22.2	22.2	0	0.06	0.06	0	1.07	1.07	0	0.89	0	0	0	na	0

Normalised pressure data

	%		% increase			% increase	% surface	%	% estuary	Annual
F-4	cleared	Population	in annual	% increase	% increase	in annual	flows	structures		fish catch
Estuary Tweed River	55.23	/km ² 58.45	844.52	in annual TP 596.04	10 annual 1 N 259.92	29.45	extracted 6.68	perimeter 1.00	aquaculture 1.23	<u>t/km²</u> 6.46
Cudgen Creek	68.56	56.44	3088.44	991.73	780.88	37.72	2.08	0.07	0	0.40
Cudgera Creek	58.28	30.60	1737.54	641.32	457.29	32.00	0.96	0	0	
Mooball Creek Brupswick Pivor	64.61	34.33	1306.80	673.88	367.34	29.93	1.76	0 29	2.59	
Brunswick River Belongil Creek	70.47 57.22	52.27 181.11	892.68 133.91	641.74 467.08	320.47 190.51	32.10 24.96	1.21 0	0.38 0	2.58 0	
Tallow Creek	68.11	586.06	542.51	957.14	308.33	67.27	Ő	0	Ő	
Broken Head Creek	100.00	310.63	438.66	319.91	149.45	12.29	0	0	0	
Richmond River	56.30	14.93	1301.87	677.08	342.88	38.28	4.50	6.24	0.54	7.27
Salty Lagoon Evans River	0 20.89	0.01 19.58	0.01 118.45	0 781.03	0.01 241.91	0.01 14.35	0 0	0 7.22	0	
Jerusalem Creek	2.36	0.27	1.78	3.47	4.95	-0.84	0	1.21	0	
Clarence River	39.02	2.33	125.55	214.60	89.17	22.63	2.29	1.25	0.14	7.20
Lake Arragan	0	0.04	0.17	0	0.17	0.10	0	0	0	
Cakora Lagoon Sandon River	2.63 0.77	7.64 0.25	4.32 1.70	2.35 0	3.31 1.70	0.68 1.37	0	2.63 0	0 2.76	0.11
Wooli Wooli River	1.27	1.64	7.23	7.26	5.57	1.48	0	0	4.76	0.11
Station Creek	0.24	0.02	1.74	0	2.01	1.36	Ő	Ő	0	
Corindi River	19.32	4.16	137.40	83.50	52.61	5.59	0.29	0	0	0.00
Pipe Clay Creek	70.80	186.71	279.59	637.33	162.12	97.00	0 1.27	0 0.62	0	
Arrawarra Creek Darkum Creek	14.92 75.57	52.27 84.47	545.40 5550.58	227.02 1531.30	149.80 1331.38	8.09 50.15	4.04	0.62	0	
Woolgoolga Lake	40.50	112.59	2515.28	771.32	616.82	31.25	3.16	1.35	Ő	
Flat Top Point Creek	71.31	298.71	7910.39	2155.44	1854.31	48.80	0.57	0.14	0	
Hearns Lake	66.41	103.31	10212.35	2262.70	2296.70	19.79	10.07	0.26	0	
Moonee Creek	39.12	49.86	1210.75	489.13 2349.80	329.86	32.62	1.00	0	0	0.02
Pine Brush Creek Coffs Creek	68.62 82.32	112.29 758.33	10593.78 7373.43	2349.80 2073.29	2381.70 1751.22	31.11 58.69	9.17 3.26	1.72	0	0.31
Boambee Creek	62.21	199.44	3881.93	1208.54	954.21	34.07	2.85	0.24	0	0.40
Bonville Creek	38.36	86.69	402.42	325.59	158.84	11.82	1.11	0.01	0	0.01
Bundageree Creek	20.84	15.15	93.54	206.11	65.30	24.12	0	0	0	
Bellinger River	13.81 25.28	7.10 2.75	65.68 549.47	62.32 265.72	32.72 163.03	3.29 18.43	0.38 0	1.49 0	2.91 0	
Dalhousie Creek Oyster Creek	29.71	15.55	276.16	197.18	105.22	14.71	0	0	0	
Deep Creek	39.20	15.70	751.04	1401.29	330.34	17.84	2.89	1.15	0	
Nambucca River	33.66	9.05	232.48	211.05	84.99	14.60	0.96	0.94	5.13	8.13
Macleay River	55.99	4.19	64.18	171.13	67.29	16.66	1.22	1.03	3.00	4.17
South West Rocks Creek Saltwater Creek (Frederickton)	27.27 41.81	394.10 151.12	280.54 619.54	537.20 603.08	160.59 238.44	27.00 31.84	0 0	4.45 0	0	
Korogoro Creek	9.14	29.89	99.76	146.54	53.00	12.37	0	0	0	
Killick Creek	30.73	115.61	83.34	276.94	90.90	12.17	Ő	Ő	Ő	
Goolawah Lagoon	7.18	2.13	0	59.24	0	6.16	0	0	0	
Hastings River	30.25	10.63	116.05	201.02	81.56	11.96	2.28	1.58	4.19	
Cathie Creek Duchess Gully	29.09 53.99	71.53 142.70	140.06 429.69	340.69 617.04	105.58 229.17	31.67 45.34	0 0.12	4.24 0	0	3.76
Camden Haven River	26.30	14.26	185.12	191.61	90.93	14.94	3.30	0.39	2.91	5.09
Manning River	42.03	4.77	40.98	209.77	73.44	10.29	3.51	0.99	8.33	7.34
Khappinghat Creek	28.40	8.35	104.16	281.29	89.06	17.31	0.19	0	0	
Black Head Lagoon	91.86	206.46	75.12	371.13	90.33	9.97	0	0	0	5.24
Wallis Lake Smiths Lake	45.06 22.07	18.04 36.05	73.04 188.73	351.85 395.73	114.83 119.24	13.93 26.19	0.65 0	0.65 2.63	3.86 0	5.34 5.06
Myall River	18.70	4.53	29.74	137.47	47.02	7.50	0.33	0.12	0.24	3.27
Karuah River	34.48	2.06	30.93	155.26	55.38	6.91	1.01	0.48	6.74	3.27
Tilligerry Creek	30.45	59.98	786.13	1480.98	352.40	43.77	0	1.09	8.04	3.27
Port Stephens	19.53 61.23	13.35 14.57	54.36 304.73	182.93 394.94	60.97	8.30 20.00	0.74 21.58	0.12 4.79	6.54 0.48	3.27 5.86
Hunter River Glenrock Lagoon	01.23	1005.69	330.66	731.37	164.47 200.13	44.70	21.56	4.79	0.48	5.00
Lake Macquarie	40.08	238.65	303.10	368.00	146.55	25.95	2.29	12.47	Ő	
Middle Camp Creek	14.00	29.08	44.44	95.25	33.10	8.15	0	0	0	
Moonee Beach Creek	18.57	0.96	1540.43	629.24	427.32	32.20	0	0	0	4.40
Tuggerah Lake Wamberal Lagoon	33.05 74.74	163.84 773.10	424.19 378.23	310.12 813.76	139.63 236.05	22.06 75.83	24.06 0	0.61 0	0	4.12
Terrigal Lagoon	90.50	1022.75	504.33	1131.40	333.89	124.27	0.28	0.09	0	
Avoca Lake	58.89	653.06	286.28	546.07	183.80	65.26	0	0	0	
Cockrone Lake	38.60	240.99	136.25	314.12	103.13	47.45	1.42	0	0	
Brisbane Water	52.13	644.42	292.37	632.13	188.62	69.80	0.29	2.68	6.10	4.00
Hawkesbury River Pittwater	27.55 16.21	39.70 506.96	200.75 176.65	190.33 189.29	69.90 75.16	11.08 15.86	31.74 1.92	3.50 18.53	3.69 0	1.99 1.99
Broken Bay	31.19	45.45	202.01	196.02	71.48	11.75	0	0.01	0	1.99
Narrabeen Lagoon	28.10	819.39	288.35	350.68	131.45	43.32	3.19	8.04	0	
Dee Why Lagoon	97.00	5800.27	912.75		480.88	142.21	0	0.46	0	
Curl Curl Lagoon	100.00	1661.83	664.29	1429.33	414.48	121.81	0	0 40	0	
Manly Lagoon Middle Harbour Creek	74.48 68.48	1581.80 1706.94	863.78 448.97	1205.60 951.87	412.79 284.71	114.03 104.46	4.90 0.36	0.49 0.73	0	1.25
Lane Cove River	74.86	1938.34	494.62		315.28	117.79	1.08	0.14	0	1.25
Parramatta River	86.07	2460.07	674.12	1314.71	397.02	105.19	1.47	0.14	0	1.25
Port Jackson	81.74	2555.76	607.42		362.55	109.29	0.98	0.31	0	1.25
Cooks River Georges River	93.89 59.01	3418.59 900.35	1055.86 2946.30	1572.44 1471.56	526.63 870.58	122.89 82.60	0.62 22.03	0.11 4.90	0 8.12	
Botany Bay	59.01 61.50	900.35 1210.55	2946.30 2705.25	1471.56	870.58 824.73	82.60 87.78	22.03 18.08	4.90	8.12	
Port Hacking	17.73	392.76	95.83		46.58	22.34	0.48	16.99	0	0.20
Wattamolla Creek	0	0	0	0	0	0	0	0	0	
Hargraves Creek	38.27	616.45	565.96	653.60	239.60	46.08	0	0	0	
Stanwell Creek	13.11	69.47	186.33	139.79	68.87	13.06	14.95	0	0	
Flanagans Creek Woodlands Creek	37.69 50.50	809.98 434.29	464.56 209.80	559.23 414.96	192.28 133.42	12.93 17.44	0 0	0	0	
Slacky Creek	51.77	648.76	337.47	588.06	177.73	17.44	0	0	0	
Bellambi Gully	87.29	1177.75	851.46	935.89	347.10	36.68	0.59	0	0	
Bellambi Lake	93.23	2141.26	407.16	914.83	241.40	45.61	0	0	0	
Towradgi Creek	67.33	1357.52	396.58	693.71	201.79	18.89	2.61	0	0	
Fairy Creek Allans Creek	75.08 74.68	1477.41 882.32	390.81 419.39	770.92 728.64	216.63 226.23	25.35 27.87	0 0	0	0	
	74.00	002.02	+13.39	120.04	220.23	21.01	0	0	0	

	% cleared	Population	% increase	% increase	% incroses		% surface flows	%	% estuary under	Annual fish catch
Estuary	land	/km ²	in annual TSS	in annual TP	% increase in annual TN	in annual flow	extracted	structures perimeter	aquaculture	t/km ²
Port Kembla	95.61	0	650.59	1027.97	328.65	45.47	0	0	0	QRIII
Lake Illawarra	59.34	350.99	499.60	566.29	218.97	33.66	1.66	0.18	0	5.73
Elliott Lake	88.71	1461.98	479.53	1101.34	323.55	63.52	0	0	0	
Minnamurra River Spring Creek	65.66 96.05	42.22 187.41	530.57 156.58	567.89 508.59	157.61 167.39	36.56 0	1.65 0	0.81 0	0	0.68
Munna Munnora Creek	86.26	214.32	143.00	589.53	195.13	68.65	0	0	0	
Werri Lagoon	76.51	80.13	106.19	411.72	152.17	44.01	Ő	Ő	Ő	
Crooked River	85.92	48.74	175.30	612.17	227.59	51.24	0.17	0	0	
Shoalhaven River	36.68	6.29	79.05	222.08	73.50	11.66	25.70	20.29	5.79	4.71
Wollumboola Lake	7.35	32.24	24.88	54.88	20.87	3.50	0 0	0 5.75	0	1.09
Currarong Creek Cararma Creek	4.05 2.86	19.69 0.25	20.42 4.81	29.90 15.57	14.96 7.01	5.35 -2.85	0	0.75	0	
Wowly Gully	16.16	129.04	85.43	178.61	53.93	7.46	0	ŏ	Ő	
Callala Creek	14.13	71.40	88.61	157.02	53.30	4.88	0	0	0	
Currambene Creek	33.16	9.03	65.51	207.71	69.56	17.03	0.17	0.74	0.27	
Moona Moona Creek	24.91	34.27	102.41	255.68	81.50	26.60	0	0	9.38	
Flat Rock Creek Captains Beach Lagoon	0.14 0	1.88 0	9.54 5.30	6.03 0	7.33 5.30	1.17 1.83	0	0	0	
Telegraph Creek	0	0	5.13	0	5.13	1.05	0	0	0	
Jervis Bay	8.73	25.29	69.65	184.23	62.55	14.37	0.11	0.27	0.06	0.00
St Georges Basin	14.72	42.71	41.74	113.91	40.13	10.89	0.14	1.38	0	
Swan Lake	12.57	17.41	95.05	164.26	53.87	19.04	0.04	0	0	
Berrara Creek	1.70	3.21	9.60	5.76	5.34	0.75	0	0	0	
Nerrindillah Creek Conjola Lake	6.42 9.60	1.49 7.84	8.64 9.62	40.64 65.09	17.56 20.54	3.10 4.43	0 0.13	1.38 2.39	0 1.06	
Narrawallee Inlet	43.01	15.93	9.62 36.60	283.98	20.54 100.65	4.43 23.83	0.13	2.39	2.43	
Mollymook Creek	73.90	334.74	303.73	730.62	210.40	30.71	5.73	2.10	2.40	
Millards Creek	84.07	701.03	404.72	925.20	264.12	47.95	0	0	0	
Ulladulla	96.30	0	548.87	1198.39	336.79	61.40	0	0	0	
Burrill Lake	49.15	32.98	71.94	347.54	118.44	31.48	0.33	0.91	0.29	
Tabourie Lake	15.42	10.88	26.38	111.41	42.18	9.43	0 0	0.11	0	0.53
Termeil Lake Meroo Lake	30.82 24.38	2.00 1.52	46.72 74.26	198.66 175.59	75.53 70.70	20.22 15.60	0.07	0.06 0.02	0	0.53
Willinga Lake	24.30	8.88	32.22	143.28	54.12	16.94	0.07	0.02	0	
Butlers Creek	61.69	6.01	508.84	1073.30	323.20	135.95	ů 0	0	0	
Durras Lake	6.22	1.26	41.50	73.60	25.31	8.01	0	0	0	4.78
Durras Creek	10.44	8.95	20.56	53.87	19.33	4.45	0	0	0	
Maloneys Creek	8.65	41.01	87.65	127.23	46.49	11.83	0	0	0	
Cullendulla Creek	39.13	37.69	257.87	564.55	168.27	65.30	0.12	0	5.77	0.00
Clyde River Batemans Bay	3.98 39.78	0.80 6.15	6.02 11.83	19.79 31.11	10.22 13.58	2.99 4.06	0.52 0.51	1.10 0.20	12.63 0	0.30
Saltwater Creek (Rosedale)	68.88	32.09	124.34	514.20	173.78	52.56	1.31	0.20	0	
Tomaga River	17.34	13.32	78.61	180.58	58.06	17.11	0.19	1.91	2.98	
Candlagan Creek	17.24	16.71	223.98	224.51	97.48	14.24	0.02	0	0	
Bengello Creek	4.82	3.66	435.79	209.24	132.49	5.43	0	0	0	
Moruya River	12.87	2.60	83.89	88.87	40.81	8.18	1.39	2.72	2.17	2.55
Congo Creek Meringo Creek	71.76 47.39	7.08 7.44	109.38 99.21	427.34 321.40	144.60 98.35	54.57 21.34	1.18 0	7.11 0	0	8.37 0.16
Kellys Lake	83.57	6.95	164.31	497.95	139.93	21.34	0	0	0	0.10
Coila Lake	22.73	20.03	35.91	124.49	42.43	9.70	0.06	0.01	Ő	9.75
Tuross River	13.04	0.54	34.19	75.53	27.23	6.53	1.80	0.56	8.00	
Lake Brunderee	4.89	6.26	9.76	24.01	11.95	2.10	0	0	0	
Lake Tarourga	0.80	0.81	6.22	5.15	5.19	0.95	0	0	0	4.04
Lake Brou Lake Mummuga	7.60 4.96	0.56 30.58	7.76 16.08	19.25 24.58	10.66 10.78	2.87 3.08	0 0.07	0	0	4.94
Kianga Lake	23.48	43.09	144.94	234.48	81.36	25.64	0.07	5.17	0	1.13
Wagonga Inlet	9.47	15.05	35.73	76.28	26.18	5.65	0.43	1.49	13.12	0.00
Little Lake (Narooma)	67.53	428.12	248.01	578.59	151.15	0	3.87	1.23	0	
Bullengella Lake	53.52	13.48	48.31	384.67	142.31	26.78	0	0	0	
Nangudga Lake	73.87	11.97	325.60	849.93	264.16	71.54	0	0	0	2.96
Corunna Lake	45.37 72.43	7.65 5.81	172.60 67.72	441.80 433.94	140.28	40.38 52.83	0.19 3.69	0 0	0	3.00
Tilba Tilba Lake Little Lake (Wallaga)	72.43	7.17	142.64	433.94 489.43	151.90 183.89	82.55	3.69	0	0	0.79
Wallaga Lake	37.42	4.91	302.37	243.04	126.55	18.90	1.99	1.25	0.55	8.58
Bermagui River	30.05	11.73	184.65	239.88	98.14	16.56	5.02	0.18	17.75	
Baragoot Lake	18.14	1.08	52.53	129.58	42.82	8.87	0	0	0	0.89
Cuttagee Lake	4.76	0.31	13.63	24.04	10.55	2.25	0.21	0	0	4.93
Murrah River	33.75	1.56	36.30	170.09	60.01	18.80	4.54	0	0.55	0.90
Bunga Lagoon Wapengo Lagoon	12.52 16.18	1.37 1.10	14.82 8.84	56.83 69.47	24.10 27.98	5.77 6.83	0 1.04	0 0.76	0 21.17	0.97
Middle Lagoon	32.05	1.10	45.03	141.04	56.32	13.81	0.02	2.29	21.17	5.19
Nelson Lagoon	2.09	0.22	3.05	1.58	3.28	0.00	0.02	0	21.31	0.10
Bega River	41.95	4.36	71.89	220.97	77.50	18.25	11.69	2.92	1.03	
Wallagoot Lake	14.37	3.45	18.81	76.79	28.59	3.75	0.11	2.08	0	2.20
Bournda Lagoon	8.66	1.31	23.03	41.24	17.23	3.93	1.54	2.52	0	
Back Lagoon	13.57	59.80	71.31	108.39	41.47	10.66	2.14	20.53	0	0.44
Merimbula Lake Pambula River	42.78 17.63	74.75 5.42	114.89 17.23	353.89 78.81	111.27 30.15	24.95 10.50	0.14 1.56	6.65 4.08	24.78 21.17	0.11
Curalo Lagoon	15.76	65.04	75.98	142.67	47.26	10.88	1.50	4.00	21.17	0.08
Shadrachs Creek	4.07	0.57	5.54	13.52	8.29	1.82	0	0	0	2.50
Nullica River	4.71	0.06	13.19	13.99	9.94	3.44	0	0	0	
Boydtown Creek	27.44	0.27	31.14	143.90	52.18	12.13	0	0	0	
Towamba River	13.68	0.43	11.06	58.52	24.53	10.93	0.77	15.95	0.51	
Fisheries Creek	2.60	0.04	1.97	2.19	4.18	0.75	0	0	0 50	
Twofold Bay Saltwater Creek (Eden)	27.54 0	3.01 0	13.96 0	59.29 0	24.66 0	10.59 0	0.73 0	0.43 0	0.59 0	
Woodburn Creek	0	0	0	0	0	0	0	0	0	
Wonboyn River	1.40	0.19	0.71	0	1.88	0.60	0.03	0.61	12.79	
Merrica River	0	0	0	0	0	0	0	0	0	
Table Creek	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	
Nadgee River Nadgee Lake	0 0	0 0	0	0	0	0	0	0	0	

Comparison of scoring classes for pressures

	Estuary in condition	dex of stream (SKM 1999)	Estuarine indic (Laegdsgaard 2		CRC integrated -work (Moss et	d estuary assessment frame al. 2006)	Qld stream and es (SEAP) (Schelting	tuary assessment program a & Moss 2008)
PRESSURE INDICATOR	Rating	Score	Response	Trigger Level	Scoring Category ³	Indicator Value	Condition Score	
Catchment land-use					1	< 30% cleared	1	All catchments classed as 'Conservation and natural environments' (ALUM1)
					2	30 - 49%	2	≤ 10% cleared
					3	50 - 65%	3	10 – 35%
					4	66 - 80%	4	35 – 65%
					5	>80%	5	> 65%
Catchment population					1	< 2 (1000 people/km ² of catchment)	1	≤5 people/km ² in a 20 km buffer of the waterway
					2	2 – 10	2	>5 but ≤15
					3	11 – 25	3	>15 but ≤200
					4	26 - 50	4	>200 but ≤2000
					5	> 50	5	>2000
Riparian vegetation clearance							1	< 5% of river length with no riparian vegetation within a 50m buffer
							2	5 – 10%
							3	10 – 20%
							4	20 – 50%
							5	> 50%
Shoreline alienation	4	Access totally unimpeded			1	< 5% of shoreline developed		
	3	Access to > 95% of shoreline	Initial	< 25% of foreshore with structures	2	< 50% developed for agriculture, < 5% urban		
	2	> 90%	Moderate	25 – 50%	3	> 50% agriculture or 5 – 20% urban		
	1	> 75%	Pressing	50 – 75%	4	21 – 50% urban		
	0	< 75%	Urgent	> 75%	5	> 50% urban		
Freshwater impoundments					1	No impoundments		
					2	Total impoundment volume < 20% median annual flow		
					3	20 – 50%		
					4	51 – 10%		
					5	> 100%		

	Estuary in condition	ndex of stream (SKM 1999)	Estuarine indic (Laegdsgaard 2		CRC integrated -work (Moss et	l estuary assessment frame al. 2006)	QId stream and es (SEAP) (Schelting	stuary assessment program a & Moss 2008)
PRESSURE INDICATOR	Rating	Score	Response	Trigger Level	Scoring Category ³	Indicator Value	Condition Score	Indicator Value
Entrance openings			Initial	15 – 25% of openings are artificial				
			Moderate	25 - 50%				
			Pressing	50 - 90%				
			Urgent	90 - 100%				
Total Nitrogen load			orgent	30 10070	1	0 – 5.5 kg/ha/yr		
rotarratiogenioad					2	5.6 - 11		
					3	11.1 – 16.5		
					4	16.6 – 22		
					5	> 22		
Total Phosphorus load					1	0 – 0.6 kg/ha/yr		
load					2	0.7 – 1.1		
					3	1.2 – 1.65		
					4	1.66 – 2.2		
					5	> 2.2		
Fine sediment load					1	< 5 kg fine	1	< 5 kg fine
						sediment/year/ m ³ estuary volume		sediment/year/m ² estuary and no dredging
					2	estuary volume	2	< 5 kg/year/m ² estuary and dredging present
					3	5 – 10 kg/year/m ³	3	5 – 10 kg/year/m ² and no dredging
					4		4	5 – 10 kg/year/m ² and dredging present
					5	> 10 kg/year/m ³	5	> 10 kg/year/m ²
Point source discharges					5		1	No point sources
aloonargeo							2	
							3	1 point source
							4	
							5	> 1 point source
Boating use							1	Limited/none
-							2	Recreational vessels only
							3	Recreational and commercial vessels
							4	Marina/permanent mooring facilities
							5	International port facilities

Data availability for NSW estuaries

LEGEND	Data available	Data modelled Pata estimated	× Data bein	g acquired 📃 🗾 Data	unavailable na Not applicable
	Condition data	Estuary physical data		Pressure/stressor data	
	NRC indicators	Base data	Derived data	Catchment	Ripar'n F'shore Waterway Climate
			ne		
Estuary	Chlorophyll Macroalgae Turbidity Seagrass Mangrove Saltmarsh Fish	Coordinates Coordinates Geomorphology Entrance condition Rainfall Evaporation Surface area Bathymetry Tidal prism Tidal prism Tidal planes Tidal limits Catchment area Catchment above tidal limit Salinity (time series)	Estuary volume Catchment runoff Dilution Freshwater replacement tim Exchange efficiency	Population Land-use Runoff change Sediment load Sewerage STP discharges Nutrient load	Vegetation extent Water extraction Structures Aquaculture Entrance works Entrance opening Harvesting Invasive species Sea level rise Rainfall change
Tweed River	✓ <mark>×</mark> × ✓ ✓ ✓ ✓		? ✓ ? <mark>× ×</mark> ✓		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Cudgen Creek	x x x √ √ √ x	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $	✓ ✓ ✓ × × ✓	🗸 🗸 🗸 🗸 🗸 na 🗸	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Cudgera Creek	x x x √ √ √	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \times ? \times \checkmark \checkmark \checkmark \times \checkmark$? ✓ ? <mark>× ×</mark> ?		
Mooball Creek	x x x √ √ √ x	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \times \checkmark \checkmark \checkmark \times \checkmark$? ✓ ? <mark>× ×</mark> ✓		
Brunswick River	$\checkmark \qquad \mathbf{x} \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark$	$(\checkmark \checkmark$? ✓ ? <mark>× ×</mark> ✓		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Belongil Creek	✓ × × na ✓ ✓ ✓	イ イ イ イ イ イ メ na na イ イ メ イ	? ✓ ? × × n	a 🗸 🗸 🗸 🗸 na 🗸	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
allow Creek	🗸 🗶 🗙 na na 🗸 🗸	✓ ✓ ✓ ✓ ✓ ✓ ✓ × na na ✓ ✓ × ✓	? ✓ ? × × n		
Broken Head Creek	× × × na na V V	🗸 🗸 🗸 🗸 🗸 🗴 na na 🗙 🗸 🗴	? ✓ ? × × n		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Richmond River	\checkmark x x \checkmark \checkmark \checkmark \checkmark		? ✓ ? × × ✓		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Salty Lagoon	x x x x x x x	🗸 🗸 🗸 🗸 V 🗴 na na 🗸 V 🗴 🗴	? ✓ ? × × n		
Evans River	\checkmark x \checkmark \checkmark \checkmark \checkmark x	$\checkmark \checkmark $? ✓ ? × × ✓		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
lerusalem Creek	× × × na na v ×	V V V V V V x na na V V x x	? ✓ ? × × na		
Clarence River	\checkmark x x \checkmark \checkmark \checkmark \checkmark	$\checkmark \checkmark $	✓ ✓ ✓ × × ✓		
.ake Arragan	x x x x x x x	🗸 🗸 🗸 🗸 🗸 🗴 na na 🗴 🗸 🗴	? ✓ ? × × na	a 🗸 🗸 🗸 🗸 na 🗸	
Cakora Lagoon	x x x √ √ √ x	VVVVVVV VX na na VVXX	? ✓ ? × × n		
Sandon River	$\checkmark \mathbf{x} \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	$\checkmark \checkmark $? ✓ ? <mark>× ×</mark> ✓		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Vooli Wooli River	x x x √ √ √ √	$\checkmark \checkmark \times \times$	✓ ✓ ✓ × × ✓		
Station Creek	× × × na √ √ √	✓ ✓ ✓ ✓ ✓ ✓ ✓ x na na ✓ ✓ x x	? ✓ ? × × n		\checkmark x \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark x \checkmark \checkmark
Corindi River	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$	$\checkmark \checkmark \times$	✓ ✓ ✓ × × ?		
Pipe Clay Creek	× × × na × ×	VVVVVVV x na na v x x	? ✓ ? × × n		
rrawarra Creek	$\begin{array}{c c} x & x \\ \hline x & x \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	V V V V V X na na V V X V	? ✓ ? × × n		
arkum Creek	x x x √ √ √ √	V V V V V V X na na V V X V	? ✓ ? × × n		
oolgoolga Lake	× × × na v v v	V V V V V X na na V V X V	? ✓ ? × × n		
at Top Point Creek	x x x x x x x x	VVVVVVVX na na vV××	? ✓ ? × × n		
earns Lake	× × × na ✓ ✓ ✓	V V V V V X na na V V X V	? ✓ ? × × na		
oonee Creek	$\begin{array}{c c} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \end{array} \qquad \overrightarrow{} \qquad \overrightarrow{a} \qquad \overrightarrow{} $		\checkmark \checkmark \checkmark \times \times ?		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ine Brush Creek	x x x x x x x	VVVVVVV x na na VV××	? ✓ ? × × na		
offs Creek	x x x √ √ √ x		? ✓ ? × × ?		
bambee Creek	x x x √ √ √ √	$\checkmark \checkmark \checkmark$? ✓ ? × × ✓	VVVVV Na V	
onville Creek	x x x √ √ √ x		· · · · · · · · · · · · · · · · · · ·		
undageree Creek	x x x x x x x		? ✓ ? × × n		
ellinger River	\checkmark x \checkmark \checkmark \checkmark \checkmark	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$? ✓ ? × × ✓		
alhousie Creek	x x x √ √ √ √	🗸 🗸 🗸 🗸 🗸 🗴 na na 🗸 🗸 🗴	? ✓ ? × × na		
yster Creek	× × × na √ √ √	V V V V V V X na na V V X X	? ✓ ? × × n		
leep Creek	$\begin{array}{c c} x \\ x $	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark na \checkmark \checkmark x \checkmark	\checkmark \checkmark \checkmark \times \times \checkmark		
lambucca River	\checkmark x x \checkmark \checkmark \checkmark	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$? ✓ ? × × ✓		
Macleay River					

	Con	diti	on d	ata			Es	tuar	y phy	/sica	l dat	а												P	ress	ure/s	stres	sor o	data											
	NRC							se da											Deri	ved o	data					ment					Ripar	'n F	"shor	re V	Nater	way		Cli	mate	•
Estuary	Chlorophyll	Macroalgae	Turbidity	Seagrass	Mangrove	Saltmarsh	Fish Coordinates	Geomorphology	Entrance condition	Rainfall	Evaporation	Surface area	Bathymetry	Tidal prism	Tidal limits	Catchment area	Catchment above tidal limit	Salinity (time series)	Estuary volume	Catchment runoff	Dilution	Freshwater replacement time	Exchange efficiency		Population	Land-use Runoff change	Sediment load	Sewerage	STP discharges	Nutrient load	Vegetation extent	Water extraction	Structures	Aquacuiture	Entrance works	Entrance opening Harvesting	Invasive species	Sea level rise	Rainfall change	Runoff change
South West Rocks Creek	×	×	×	√	√	✓	✓ ✓	- √	✓	✓	✓	✓	×	√	< √	✓	×	×	?	✓	?	×	× v		√	∕ √	 ✓ 	✓	na	√	×	✓	✓	/	V	v v	× ×	✓	_ √	×
Saltwater Creek (Frederickton)	×	×	×	na	na	na	 ✓ 	 ✓ 	✓	✓	✓	¥ .	✓ I	na n	a √	✓	×	×	\checkmark	✓	✓	×	× n	a	< ,	< ✓	✓	\checkmark	na	✓		✓	√ ,	/	 ✓ 	v v	×	√	√	×
Korogoro Creek	×	×	×	\checkmark	✓	✓	✓ ✓	 ✓ 	✓	✓	✓	✓	×	?	< √	✓	×	×	?	✓	?	×	×	?	< ,	< ✓	✓	\checkmark		✓		✓	< ,		✓	v v	<pre>x</pre>	✓	✓	×
Killick Creek	×	×	×	\checkmark	✓	✓	 ✓ 	 ✓ 	 ✓ 	✓	✓	 ✓ 	√ I	na n	a √	✓	×	×	\checkmark	✓	✓	×	× n	a	< ,	< ✓	✓	\checkmark		\checkmark	×	✓	✓		 ✓ 	v v	 × 	✓	✓	×
Goolawah Lagoon	×	×	×	×	×	×	× √	 ✓ 	✓	✓	✓	✓	×I	na n	a 🛛 🗙	 ✓ 	×	×	?	✓	?	×	× n	a	< ,	< ✓	✓	\checkmark	na	\checkmark	×	✓	✓	 Image: A set of the set of the	 ✓ 	v v	<pre>/ ×</pre>	✓	_ ✓	×
Hastings River	\checkmark	×	\checkmark	\checkmark	✓	✓	 ✓ 	 ✓ 	 ✓ 	\checkmark	✓	 ✓ 	✓	✓	< ✓	✓	×	\checkmark	✓	\checkmark	✓	×	× v		< ,	< ✓	✓	\checkmark		✓	×	✓	✓	 Image: A start of the start of	 ✓ 	✓ v	<pre>X</pre>	\checkmark	✓	×
Cathie Creek	×	×	×	\checkmark	✓	✓	 ✓ 	 ✓ 	 ✓ 	✓	✓	 ✓ 	✓	√ n	a 🗸	✓	×	\checkmark	✓	✓	✓	×	× v		•	< ✓	✓	\checkmark	na	✓	×	✓	✓	/	 ✓ 	✓	× ×	\checkmark	✓	×
Duchess Gully	×	×	×	×	×	×	× v	 ✓ 	 ✓ 	✓	✓	✓	×I	na n	a 🗸	✓	×	\checkmark	?	✓	?	×	× n	a	•	< ✓	✓	\checkmark	THEA	✓	×	✓	 ✓ 	/	 ✓ 	✓	× ×	✓	✓	×
Camden Haven River	\checkmark	×	×	\checkmark	\checkmark	✓	× ✓	 ✓ 	✓	✓	✓	✓	×	✓	< ✓	✓	×	\checkmark	?	\checkmark	?	×	×v		 	< ✓		\checkmark	na	✓	×	✓	✓		 ✓ 	✓	× ×	✓	✓	×
Manning River	\checkmark	×	×	\checkmark	\checkmark	✓	✓ ✓	 ✓ 	 ✓ 	\checkmark	✓	✓	×	✓	< ✓	✓	×	\checkmark	?	\checkmark	?	×	×v		< ,	< ✓	✓	\checkmark	\checkmark	\checkmark	×	✓	✓	 	 ✓ 	√ v	× ×	✓	✓	×
Khappinghat Creek	\sim	×	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	× 1	na n	a ✓	_ √	×	×	?	\checkmark	?	×	× n		< ,	< ✓	 ✓ 	\checkmark	na	\checkmark	×	✓	 ✓ 		 ✓ 	✓	×	\checkmark	_ √	×
Black Head Lagoon	×	×	×	na	✓	✓	× v	_ ✓	 ✓ 	\checkmark	\checkmark	✓	×	na n	a 🗡	✓	×	×	?	✓	?	×	× n	a	< ,	< ✓	✓	\checkmark	na	√	×	✓	 ✓ 	/	 ✓ 	✓	<pre>/ x</pre>	\checkmark	✓	×
Wallis Lake	\checkmark	×	\checkmark	\checkmark	\checkmark	✓	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	× -	✓	 ✓ 	< ✓	`√	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×v		✓	< ✓	< ✓	\checkmark		\checkmark		✓ _	✓ ,	 Image: A set of the set of the	🗸 👘	✓ v	 × 	\checkmark	✓	×
Smiths Lake	✓	×	\checkmark	\checkmark	na	\checkmark	× ✓	- ✓	\checkmark	\checkmark	\checkmark	 ✓ 	√	na n	a ✓	` - ✓	×	\checkmark	\checkmark	\checkmark	\checkmark	×	× n		✓	< ✓	< ✓	\checkmark	THEA	\checkmark	×	✓	✓ I 1		🗸 👘	✓ v	 × 	\checkmark	✓	×
Myall River	\sim	×	\checkmark	\checkmark	\checkmark	✓	× ✓	- ✓	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	?	< √	` √	×	\checkmark	✓	\checkmark	✓	×	× 1	?	< ,	< ✓	< ✓	\checkmark	na	\checkmark		✓	 ✓ 	 	 ✓ 	✓	<pre> ×</pre>	\checkmark		×
Karuah River	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	✓ ✓	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	×	 ✓ 	< ✓	`	×	×	?	✓	?	×	×v		< ,	< ✓	 ✓ 	\checkmark	na	\checkmark	×	✓	 ✓ N 		 ✓ 	✓ v	<hr/> ×	\checkmark		×
Tilligerry Creek	×		×	\checkmark	\checkmark	\checkmark	× √	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	×	?	c √	` ✓	×	×	?	✓	?	×	× 1	?	< ,	< ✓	✓	\checkmark	THEA	✓	×	✓	 ✓ N 		 ✓ 	✓ v	<hr/> ×	\checkmark	 ✓ 	×
Port Stephens	×		×	\checkmark	\checkmark	\checkmark	× ✓	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	×	✓ .	< X	\checkmark	×	×	?	\checkmark	?	×	×v		 	< ✓	 ✓ 	\checkmark		✓	×	✓	 ✓ N 		✓	✓ V	× ×	✓	 ✓ 	×
Hunter River	×		×	\checkmark	✓	\checkmark	× ✓	 ✓ 	 ✓ 	\checkmark	\checkmark	\checkmark	×	 ✓ 	< ✓	✓	×	×	?	\checkmark	?	×	×v		< ,	< ✓	✓	\checkmark		√	×	✓	 ✓ N 		 ✓ 	✓ v	<hr/> ×	\checkmark	 ✓ 	×
Glenrock Lagoon	×	×	×	×	×	×	× ✓	 ✓ 	 ✓ 	\checkmark	✓	\checkmark	× 1	na n	a ✓	 ✓ 	×	×	?	✓	?	×	× n	a	 	< ✓	✓	\checkmark	na	\checkmark	×	✓	 ✓ N 		✓	✓ V	× ×	✓	 ✓ 	×
Lake Macquarie	\checkmark	×	×	\checkmark	✓	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark	✓	 ✓ 	✓	✓ !	c √	✓	×	\checkmark	?	✓	?	×	× v		< ,	< ✓	 ✓ 	\checkmark		\checkmark	×	✓	 ✓ 		 ✓ 	✓ v	< ✓	 ✓ 	✓	×
Middle Camp Creek	×	×	×	×	×	×	× √	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark		na n		✓	×	×	?	✓	?	×	× n		< ,	< ✓	✓	\checkmark		✓	×	✓	 ✓ N 		 ✓ 	✓ v	<hr/> ×	\checkmark	 ✓ 	×
Moonee Beach Creek	×	×	×	×	×	×	× √	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	× 1	na n		 ✓ 	×	×	?	✓	?	×	× n	a	✓	< ✓	 ✓ 	\checkmark	na	\checkmark	×	✓	 ✓ N 		✓ 1	✓ V	× ×	✓	 ✓ 	×
Tuggerah Lake	 ✓ 	×	\checkmark	 ✓ 	\checkmark	✓	✓	 ✓ 	 ✓ 	V	✓	 ✓ 	✓		a ✓	✓	×	×	✓	 ✓ 	✓	×	× v		< ,		 ✓ 	✓	na	✓	×	✓	✓		 ✓ 	✓ V	× ×	✓		×
Wamberal Lagoon	✓	×	\checkmark	 ✓ 		na	✓	 ✓ 	 ✓ 	V	✓	 ✓ 		na n		 ✓ 	×	 ✓ 	 ✓ 	✓	~	×	× n		< \ \		✓	 ✓ 	na	✓	×	 ✓ 	< ,		 ✓ 	✓	× ×	 ✓ 		×
Terrigal Lagoon	×	×	×	~	V 1	na	v v	V	~	~	~	V		na n		~	×	~	?	~	?	×	× n		v ,	✓	· •	~	1104	√	×	~	× ``		V .	v v	×	 ✓ 	~	×
Avoca Lake	~	×	~	×	×	×	× ×	V	V	V	*	V .		na n		~	×	V		~	V	×	× n		v ,		~	V	nu	√	×	v I	v ,		V .	v v	×	V	V	×
Cockrone Lake	×	×	×	V	na	na	v v	~	v	V	~	~	× 1	na n	a 🗸	~	×	V	?	v	?	×	× n	a	v v		~	V	na	✓ ✓	×	$\frac{1}{\sqrt{2}}$	✓ ,		V	v v	×	V		×
Brisbane Water		*	×	V	V I	·		V	V	V	v		v v	1		· ·	×	4		V	v 2	~	~ ~					V		✓ ✓	×		✓ \ √			v v		 ✓ ✓ 		×
Hawkesbury River	v			V	v	•	v v	V	v	v	v	•	*	V	· ·	· · ·	*	v	?	V	?		× •		· ·		v	v				*	• •		•	• •		 ✓ 		
Pittwater	×		×	V	V	•	v v	V	v	v	V	•	×	?		~	×	×	?	~	?	×	×	<u>^</u>	v (~	~	THEA	✓	× ×	×	√ ,		V .	• •	×	 ✓ 		×
Broken Bay	×	×	×	V	V	*	×	V	V	V	V	•	*	·	×		×	×	?	~	!	×	*	<u>(</u>	v ,		· ·	V	na	v		× I	√ ,		· ·	• •	×	 ✓ 	_	×
Narrabeen Lagoon	V	×		V	V	V	~ ~	V	×	V	V	V (v		a ✓	· · ·	×	V	V V	•	v	×	× v		v (· ·	V	na	×	× ×	v l	√ ,		V .	v v	×	 ✓ 	- V	×
Dee Why Lagoon		×	×	~	na	~	v v	V	V	•	V	•		na n		~	×	V		~	v 0	×	×n	a	v ,		, V	V	1104	✓		× I	v ,		· ·	• •	×	V,	V	×
Curl Curl Lagoon		*	×	×	×	×	×	~	V	V	V	•		na n			×	V	?	~	?	×	× n	a	v ,		, V	V		√	*	× I	· ·		•	• •	×	V.	V	×
Manly Lagoon	v	×	V	v	V	na	×	V	v	V	V	•	×I	na n		~	×	V	?	v	?	×	× n	a	v (✓	V	~	nu	√	×	× I	v ,		v	v v	×	V.	- V	×
Middle Harbour Creek	v	×	×	V	V	×	×	V	V	V	V	V (v	· ·	< ✓	· · · ·	×	×	V	v	V	×	×	<u>'</u>	v (V	V	na	×	×	×	✓		V .	v v	×	 ✓ 	_	×
Lane Cove River	 ✓ 	×	×	V	V	v	× V	V	v	V	~	V .	V ({	< <	✓	×	~	~	~	~	x	×	<u> </u>	v v	✓	· •	~		✓	×	×	✓		V .	v v	×	✓		×
Parramatta River	\checkmark	×	~	~	~	~	× ✓	~	V	~	~	V .	V	?	< <	~	×	~	V .	V	~	x	×	!	v ,	✓	· •	~	nu	√	×	~	✓		V .	v v	×	 ✓ 		×
Port Jackson	\checkmark	×	×	 ✓ 	V	~	✓ ✓	~	~	✓	~	V .	✓	× `	× ×	✓	×	~	~	~	~	×	×v		v ,		✓	\checkmark	THEA	√	×	×	 		 ✓ 	v v		 ✓ 		×
Cooks River	\checkmark	×	\checkmark	v	V	~	× ✓	~	~	✓	~	V	×	?	< 🗸	 ✓ 	×	~	?	✓	?	×	×		v ,	✓	 ✓ 	\checkmark	THEA	✓		 ✓ 	 ✓ N 		 ✓ 	v v	×	V		×
Georges River	\checkmark	×	\checkmark	\checkmark	✓	\checkmark	✓ ✓	✓	\checkmark	\checkmark	\checkmark	✓	×	 ✓ 	< √	\checkmark	×	\checkmark	?	✓	?	x	×v		 		 ✓ 	\checkmark	1104	√		✓	 ✓ N 		 ✓ 	v v	×	✓		×
Botany Bay	\checkmark	×	\checkmark	\checkmark	1	\checkmark	× ✓	✓	\checkmark	\checkmark	~	~	×	?	< X	✓	×	×	?	✓	?	x	×	?	< ,	\[\] \[\[\] \[\] \[\[\] \[\] \[\[\] \[\[\] \[\[\[\[✓ 	\checkmark		√		✓	< ,		 ✓ 	v v	\checkmark	 ✓ 	✓	×
Port Hacking	\checkmark	×	×	~	~	~	V V	v	v	✓	~	~	×	V .	< 🗸	~	×	\checkmark	?	\checkmark	?	×	× v		v ,		~	\checkmark	na	~	×	× 1	× ,		V .	v v	\checkmark	V	~	×

	Con	ditic	on da	ata			E	stu	ary	phys	sical	data	a												1	Pres	sure	/stre	ssor	data											
	NRC	indi	icato	rs					data											Der	ived	l data					nmen					Ripa	r'n	F'sho	ore	Wate	erway	/	C	lima	te
Estuary	Chlorophyll	Macroalgae	Turbidity	Seagrass	Mangrove	Saltmarsh	Fish	Coordinates	Geomorphology	Entrance condition	Rainfall	Evaporation	Surface area	Bathymetry	Tidal prism	Tidal planes	Tidal limits	Catchment area Catchment above tidal limit	Salinity (time series)	Estuary volume	Catchment runoff	Dilution	Freshwater replacement time	Exchange efficiency	Tidal flushing	Population	Land-use	Runoff change Sediment load	Sewerage	STP discharges	Nutrient load	Vegetation extent	Water extraction	Structures	Aquaculture	Entrance works	Entrance opening	Harvesting		Sea level rise Deinfoll change	kaintali cnange Runoff change
Wattamolla Creek	\checkmark	x	√	x	x	x	x	✓	√	✓	V .	✓	✓	x	na I	na	√ v	/ x	√	?	✓	?	×	x	na	✓	√	√ v	∕ √	na	✓	×	\checkmark	\checkmark	\checkmark	√	\checkmark	√ <mark></mark>	×	√ I,	√ ×
Hargraves Creek	×	x	×	×	×	×	×	✓	\checkmark	\checkmark	ا	✓	✓			na	 , 	/ x	×	?	✓	?	×		na	✓	√	< <	< ✓	na	✓	×	\checkmark	\checkmark	\checkmark	~	\checkmark	√ s	×	✓	✓ ×
Stanwell Creek	\checkmark	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	ا	✓	✓			na	 , 	<pre>/ x</pre>	×	?	✓	?	×		na	\checkmark	✓	< <		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ s	×	 , 	✓ ×
Flanagans Creek	\checkmark	x	×	×	×	×	x	~	✓	\checkmark	√ .	✓	✓			na	×	<pre>/ x</pre>	×	?	✓	?	×	×	na	✓	√	< v	< ✓	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	× 3	×	 , 	× ×
Woodlands Creek	×	×	×	×	×	×	×	~	\checkmark	\checkmark	، ک	✓	✓			na	< ,	<pre>/ x</pre>	×	?	~	?	×		na	✓	√	v v	<hr/>	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	× 3	×	 , 	✓ ×
Slacky Creek	\checkmark	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	ا	✓	✓			na	 , 	<pre>/ x</pre>	×	?	✓	?	×		na	\checkmark	✓	< <	<hr/>	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ s	×	/ ,	× ×
Bellambi Gully	×	x	x	x	x	x	x	~	\checkmark	\checkmark	√ .	✓	✓ –			na	/ ,	/ x	x	?	1	?	×		na	\checkmark	√	< <	∕ √	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ s	×	/ ,	√ ×
Bellambi Lake	\checkmark	x	<u>√</u>	x	x	x	x	<u> </u>	\checkmark	- -	٠ ۲	✓	· ✓			na				2	1	2	×		na	\checkmark	· ✓			na	~	×	- -	\checkmark	<u>√</u>	- -		v 3	x		✓ ×
Towradgi Creek	· ✓	x	· ✓	x	√ -	x	x		· ·	· ✓	· ·	✓	✓			na			×	2	· ✓	2	×		na	· ·	· ✓	· ·		na	✓	×	· - /	·	· ✓	· ✓		· ·	x		√ ×
Fairy Creek	•	~		-		-	-	· ./	-	· ./	-	· ·				na			-	2		2			na	-		· ·		na	· ~	×	$\overline{\checkmark}$	\checkmark	·	-			~		√ ×
Allans Creek	v v	-		-	~	~	~	•	•	•	•	•	•		-	x				· 2	•	2	<u></u>		?	• ./	•			na	•	×	$\overline{\checkmark}$	\checkmark	• ./	•			~		✓ ×
Port Kembla	~	-	-	-			~	•	•	•	•	•	•		?	<u>-</u>	<u> </u>			· 2	· ·	?	<u></u>		?	• ./	•				•	×	$\overline{\checkmark}$	\checkmark	• ./	•			~		✓ ×
	*	*	*	*	*	*	×	•	•	•	•	v	•	~	?	*	× `			· · ·	v	?	*	*	<u>{</u>	•	•	• •		na	•	×	V V		•	•	V	× 3	~ `	v v	
Lake Illawarra	~	×	~	V	V	✓	~	√	V	V	v .	√	✓ ·	~	~	×	v v		~	✓	✓	 ✓ 	×	×	~	✓	✓	v v		na	√		✓	 ✓ 	✓	V	✓	V 3	×	v ,	✓ ×
Elliott Lake	×	×	×	 ✓ 	 ✓ 	 ✓ 	×	✓ 	 ✓ 	✓	v .	√	√	× 1	na ı	na	✓	/ ×	×	?	~	?	×	×	na	✓	✓	v v		na	✓	×	 ✓ 	\checkmark	 ✓ 	 ✓ 	V	✓ <u> </u>	×	 	✓ ×
Minnamurra River	\checkmark	×	✓	✓	✓	~	×	✓ 	 ✓ 	 ✓ 	✓ ·	✓	 ✓ 	×	✓	×	✓	<pre>/ ×</pre>		?	✓	?	×	×	~	✓	✓	v v		na	✓	×	\checkmark	\checkmark	 ✓ 	 ✓ 	V	✓ <u> </u>	×	<u>۷</u>	✓ ×
Spring Creek	 ✓ 	×	×	~	na	na	×	✓ 	 ✓ 	 ✓ 	✓ ·	✓	 ✓ 			na	۷ ۱	<pre>/ ×</pre>	×	?	v	?	×		na	 ✓ 	✓	v v		na	✓	×	 ✓ 	\checkmark	 ✓ 	 ✓ 	V	✓ <u> </u>	×	<u>۷</u>	✓ ×
Munna Munnora Creek	 ✓ 	×	×	×	×	×	×	✓	~	 ✓ 	¥ .	✓	 ✓ 	<i>(</i>	na i	na	۷ ۱	/ ×	×	?	 ✓ 	?	×		na	✓	✓	~ ~		na	✓	×	 ✓ 	\checkmark	~	 ✓ 	\sim	✓ 3	×	 	✓ ×
Werri Lagoon	 ✓ 	×	×	✓	 ✓ 	na	×	✓	✓	✓	✓ ·	✓	 ✓ 	✓ I	na i	na	 	/ ×		 ✓ 	 ✓ 	~	×	×	na	✓	 ✓ 	v v		na	✓	×	 ✓ 	\checkmark	 ✓ 	 ✓ 	\checkmark	✓ 3	×	✓	✓ ×
Crooked River	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×	✓	\checkmark	\checkmark	 ✓ 	✓	✓ 1	\checkmark	?	×	✓	/ ×		 ✓ 	✓	✓	×	×	?	\checkmark	✓ _	√ v	 ✓ 	na	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓ 3	×	✓	✓ ×
Shoalhaven River	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	×	\checkmark	×	✓	/ ×	\checkmark	?	\checkmark	?	×	×	\checkmark	\checkmark	✓ _	√ v	< ✓	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓ 3	×	✓	✓ ×
Wollumboola Lake	×	×	×	\checkmark	na	na	×	✓	\checkmark	\checkmark	✓ ·	✓	 ✓ 	√	na i	na	× 1	<pre>/ ×</pre>	- ✓	✓	✓	✓	×	×	na	✓	✓ _	√ v	 ✓ 	na	\checkmark	×	\checkmark	\checkmark	✓	\checkmark	\checkmark	 ✓ S 	×	< ,	✓ ×
Currarong Creek	×	×	×	×	×	×	×	✓	\checkmark	\checkmark	✓ ·	✓	✓	× 1	na i	na	✓	<pre>/ ×</pre>	- ✓	?	✓	?	×		na	✓	✓ _	√ v	 ✓ 	na	\checkmark	×	\checkmark	\checkmark	✓	\checkmark	\checkmark	 ✓ S 	×	✓	✓ ×
Cararma Creek	×	×	×	✓	✓	✓	×	✓	✓	✓	 ✓ 	✓	✓	×	?	×	✓	<pre>/ x</pre>	×	?	 ✓ 	?	×	×	?	✓	 ✓ 	√ v	 ✓ 	na	✓	×	\checkmark	\checkmark	\checkmark	✓	\checkmark	√ <u> </u>	×	✓	✓ ×
Wowly Gully	×	×	×	×	×	✓	×	✓	✓	\checkmark	 ✓ · 	✓	✓	× 1	na i	na	√ ۱	/ ×	×	?	✓	?	×	×	na	✓	 ✓ 	√ v		na	 ✓ 	×	\checkmark	\checkmark	\checkmark	√	\checkmark	√ <u> </u>	×	√ ۱	√ ×
Callala Creek	×	×	×	×	×	×	×	✓	✓	\checkmark	 ✓ 	✓	✓	×	na i	na	< \	/ x	×	?	✓	?	×	×	na	✓	 ✓ 	√ v	< ✓	na	✓	×	\checkmark	~	\checkmark	\checkmark	\checkmark	× 3	×	 ✓ 	✓ ×
Currambene Creek	×	×	×	✓	✓	✓	×	✓	\checkmark	\checkmark	✓ ·	✓	✓	×	?	×	 ✓ 	/ x	×	?	✓	?	×	×	?	✓	✓ _	v v	< ✓	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	✓	🗸 🔰	×	< ,	✓ ×
Moona Moona Creek	×	x	x	\checkmark	✓	x	×	\checkmark	\checkmark	\checkmark	¥ .	✓	✓	×	na i	na	 	<pre>/ x</pre>	x	?	✓	?	×	×	na	✓	√	√ v		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v 3	×	 	× ×
Flat Rock Creek	×	×	×	×	×	✓	×	\checkmark	\checkmark	\checkmark	 ✓ 	✓	✓	×	na i	na	 	<pre>/ x</pre>	×	?	✓	?	×	×	na	✓	✓ _	v v	< ✓	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	🗸 🔰	×	 	✓ ×
Captains Beach Lagoon	×	x	x	x	✓	x	×	\checkmark	\checkmark	\checkmark	¥ ,	✓	✓	×	na i	na	× v	<pre>/ x</pre>	x	?	✓	?	×	×	na	✓	√	v v		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	×	 	× ×
Telegraph Creek	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	v ,	✓	✓			na	 	/ x	×	?	✓	?	×	×	na	✓	✓	v v		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v 3	×	/ ,	× ×
Jervis Bay	×	x	x	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	ا	✓	✓ ·	✓	2	x	× v	< x	 ✓ 	✓	✓	✓	x	×	?	\checkmark	√	< <		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ s	x	/ ,	√ ×
St Georges Basin	\checkmark	x	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	√ .	✓	✓ ·	✓	 ✓ 	x	v ,	/ x	 ✓ 	 ✓ 	 ✓ 	\checkmark	x	×	✓	\checkmark	✓	< v		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v v	/ ,	/ ,	√ ×
Swan Lake	\checkmark	x	\checkmark	\checkmark	na	na	x	~	\checkmark	\checkmark	√ .	✓	✓ ·	~	na i	na	×	/ x	 ✓ 	- V	✓	\checkmark	×	×	na	\checkmark	√	< <	∕ √	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓ <u> </u>	×	/ ,	√ ×
Berrara Creek	×	x	×		na	V	x	~	\checkmark	\checkmark	√ .	✓	✓			na	v ,	/ x	 ✓ 	2	✓	2	×		na	\checkmark	√	< <	∕ √	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark		√ s	×	/ ,	✓ ×
Nerrindillah Creek	×	x	x	_		na	×	\checkmark	\checkmark	\checkmark	√ ,	✓	 Image: A start of the start of			na	×	<pre>/ x</pre>	×	2	√	2	×		na	\checkmark	✓	< v		na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark		× ,	×	<u> </u>	✓ ×
Conjola Lake	\checkmark	x	√ -	·	V	V	<i>√</i>	· ✓	· ·	· ✓	· •	✓	· ·	✓ I		x	<u> </u>					- -	×	×	V	· ·	· ✓	· ·		na	✓	×	· •	$\overline{\mathbf{v}}$	· ✓	· ✓		· ·	/ .		<pre></pre>
Narrawallee Inlet		X	X		<u> </u>	√	\checkmark	\checkmark	<u> </u>		v .	 Image: A start of the start of	 Image: A state of the state of		 Image: A start of the start of	 Image: A start of the start of		7				√	y	X	1	 Image: A start of the start of	 Image: A state of the state of			na	√	×	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark			< ·			/ x
Mollymook Creek	1	×	7	· /	· ·		×				<u> </u>	✓		¥	na i	na				2		2		×	na		✓	· •		na	, ,	×	$\overline{\checkmark}$	\checkmark	~	-		1	*		/ ×
Millards Creek	, v	~	, V	-	-		-		-	-					_				-	2	-	:			na			· •		na	▼ ✓	×	V V	▼ √	1	-					v x
Ulladulla		~	~	T.					4	4					na I	10				· ·	•	?			2	-		· ·			▼ √	×	▼ ✓	v √	4	-					v x v x
	*	*	~	~	*	*	~	•	•	•	v	•	•	~	{	~	<u> </u>		×		v	?			<u>{</u>	•	•	• •		na		×	_		*	V		· ·		· ·	v x v x
Burrill Lake	v	×	V		na	V	*	•	V	•	v ,	v	•	v	V I	v	v v	/ ×		· · ·	•	*	×	×	v	•	V I	v v		na	 ✓ 		 ✓ 	\checkmark	•	V		v v		v (
Tabourie Lake	V	×	V		na	V	×	v	V	V	v .	V	•	V	v	•	v 1	/ ×		V N	 ✓ 	 ✓ 	×	×	~	V	V	√ v		na	V	×	 ✓ 	\checkmark	~	V		V 3	*	v 1	✓ ×
Termeil Lake	V	×	V	_	na	na	×	V	V	V	 ✓ 	v	v			na	v ,	/ ×		?	✓	?	×		na na	V	V I	v v		na na	✓ ✓	× ×	\checkmark	√	V .	V		V 3	× ,	v 1	✓ × ✓ ×
Meroo Lake					na	na									na I	na		/ x		2																					

	Cor	nditio	on d	ata			I	Estu	ary	phys	ical d	ata												F	ress	ure/	stres	sor o	lata										
	NRC) ind	icato	ors					e data										Der	ived	data					ment					Ripar'	'n F	'shore	Wa	terwa	у	Cli	imate)
Estuary	Chlorophyll	Macroalgae	Turbidity	Seagrass	Mangrove	Saltmarsh	Fish	Coordinates	Geomorphology	Entrance condition	Rainfall Evaporation	Surface area	Bathymetry	Tidal prism	Tidal planes	Tidal limits	Catchment area Catchment above fidal limit	Salinity (time series)	Estuary volume	Catchment runoff	Dilution	Freshwater replacement time	Exchange efficiency	Tidal flushing	Population	Lana-use Punoff chance	Sediment load	Sewerage	STP discharges	Nutrient load	Vegetation extent	Water extraction	Structures Aquaculture	Entrance works	Entrance opening	Harvesting Invasive species	Sea level rise	Rainfall change	Runoff change
Willinga Lake	\checkmark	x	×	\checkmark	na	na	\checkmark	\checkmark	\checkmark	✓	√ √	 ✓ 	 ✓ 	na	na	✓	√ ×	. √		\checkmark	\checkmark	×	×	na	√ ,	 	✓	\checkmark	na	\checkmark	×	\checkmark	✓ ✓	 ✓ 	✓	✓ ×	√	✓	×
Butlers Creek	×	×	×	\checkmark	na	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	×	√ ×	×	?	 ✓ 	?	×	×	na	√ ,	 	< ✓	\checkmark	na	\checkmark	×	✓	✓	 ✓ 	\checkmark	✓ ×	✓	✓	×
Durras Lake	\checkmark	×	\checkmark	\checkmark	na	\checkmark	×	\checkmark	\checkmark	\checkmark	 ✓ 	✓	 ✓ 	na	na	✓	√ ×		 ✓ 	✓	✓	×	×	na	√ ,	/ /	✓	\checkmark		\checkmark	×	✓	✓ ✓	 ✓ 	\checkmark	√ ×	√	✓	×
Durras Creek	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	×	na	na	✓	√ ×	×	?	✓	?	×	×	na	 ✓ 	 	< ✓	\checkmark		\checkmark	×	✓	\checkmark	 ✓ 	\checkmark	✓ ×	✓	✓	×
Maloneys Creek	×	×	×	\checkmark	\checkmark	\checkmark	×	✓	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	×	na	na	×	√ ×		?	✓	?	×		na	 ✓ 	 	 ✓ 	\checkmark	na	\checkmark	*	✓	\checkmark	 ✓ 	\checkmark	✓ ×	√	✓	×
Cullendulla Creek	×	x	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	 ✓ ✓ 	\checkmark	×	?	×	✓	✓ ×		?	\checkmark	?	×	×	?	 ✓ 		 ✓ 	\checkmark	1104	\checkmark	* .	\checkmark	\checkmark	 ✓ 	\checkmark	× ×	\checkmark	 ✓ 	×
Clyde River	\checkmark	x	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	✓	\checkmark	×	\checkmark	✓ ×		✓	\checkmark	\checkmark	×	×	\checkmark	 ✓ ✓ 		 ✓ 	\checkmark	na	\checkmark	×	\checkmark	\checkmark	 ✓ 	\checkmark	× ×	\checkmark	 ✓ 	×
Batemans Bay	×	×	×	\checkmark	\checkmark	na	×	\checkmark	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	×	?	×	✓	√ ×		?	✓	?	×	×	?	 ✓ 		 ✓ 	\checkmark	na	\checkmark	×	\checkmark	 ✓ 	 ✓ 	\checkmark	√ ×	✓	✓	×
Saltwater Creek (Rosedale)	×	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	×	na	na	\checkmark	√ ×		?	✓	?	×	×	na	✓	< v	 ✓ 	✓		\checkmark	×	✓	\checkmark	 ✓ 	\checkmark	√ ×	✓	✓	×
Tomaga River	✓	×	 ✓ 	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	 ✓ ✓ 	\checkmark	 ✓ 	\checkmark	×	✓	✓ ×		∕ √	✓	✓	×	×	✓	✓ ·	< v	 ✓ 	✓		\checkmark	×	✓	✓ ✓	 ✓ 	\checkmark	√ ×	✓	✓	×
Candlagan Creek	✓	×	~	 ✓ 	 ✓ 	 ✓ 	✓	 ✓ 	 ✓ 	 ✓ 	~ ~	 ✓ 	×	?	×	✓	✓ ×		?	✓	?	×		?	 ✓ ✓ 	< v		 ✓ 	na	✓			✓	 ✓ 	 ✓ 	✓ ×	 ✓ 	✓	×
Bengello Creek	×	×	×	 ✓ 	 ✓ 	 ✓ 	×	✓	✓	✓	 ✓ ✓ 	 ✓ 	×	na	na	×	✓ ×		?	✓	?	×		na	✓ ·	< v		 ✓ 	na	×			 ✓ ✓ 	_	 ✓ 	✓ ×	 ✓ 	 ✓ 	×
Moruya River	 ✓ 	×	 ✓ 	 ✓ 	✓	 ✓ 	✓	 ✓ 	 ✓ 	 ✓ 	 ✓ ✓ 	 ✓ 	✓	✓	✓	 ✓ 	√ ×		 ✓ 	 ✓ 	 ✓ 	×		✓	✓ ·	/ v	 ✓ 	 ✓ 		✓			 ✓ ✓ 	 ✓ 	 ✓ 	✓ ×	✓	✓	×
Congo Creek	~	×	~	✓	na	 ✓ 	×	✓	✓	✓	~ ~	 ✓ 	×	na	na	~	✓ ×		?	 ✓ 	?	×		na	✓ ·	< v	 ✓ 	 ✓ 		√	×	_	\checkmark	✓	 ✓ 	✓ ×	 ✓ 	 ✓ 	×
Meringo Creek	×	×	×	na	na	 ✓ 	×	V	v	✓	~ ~	✓	×	na	na	×	✓ ×		?	v	?	×		na	✓ 1	/	· •	 ✓ 	na	×		\checkmark	\checkmark	V	 ✓ 	✓ ×	✓	 ✓ 	×
Kellys Lake	×	×	×	v	×	V	×	×	×	v	• •	×	×	na	na	×	√ × √ ×		· · ·	v	?	×		na	v ,			V	na	v √	× ·	×	\checkmark \checkmark \checkmark \checkmark	×	V	V X	× /	×	× ×
Coila Lake	×	×	• 	V V	na	v	×	¥	•	¥	• •	×	• •	na	na	• ./	v x			•	V	×		na	v .			v		v	x	v ./	• •	• •	v	× ×	×	• •	×
Tuross River Lake Brunderee	v	×	v	V V	na	V V	× ./	¥	•	¥	• •	×	v	na	×	v	v x √ x		× 2	v	* 2	×	× 1	∙ na	v .			v	na na	v √	x	v ./	v v √ √	• •	v	× ×	×	• •	×
Lake Tarourga	÷		~	na	na	na	v	×	• -/	•	• •	×	~	na	na na	* *	v x		? 2	•	?	×		na				v V	na	×	×	×	\checkmark		v V	× ×	× /		×
Lake Brou	~	~ ~	~	Tia V	na	Tia 1	~	· /	·	•			-	na	na	~	✓ ×		?	•	? 2	÷		na				· /	na	· ~	×		\checkmark		•				×
Lake Mummuga	· v			•	Tia 🖌	· ·	· ·	· ·	· ·	· ·	· ·			na	na		√ ×		2	•	2	-		na				· ·		✓	×		· ·		,	· · ·	· /		x
Kianga Lake	x	x	×	· ~	na	· ·	x	·	· ·	· ·	· ·		- -	na	na	×	√ ×		-	•	:	×		na				~		✓		·	$\sqrt{\sqrt{1}}$		· ~	· · ·	· /		x
Wagonga Inlet	×	×	×	·	V	·	×	$\overline{\mathbf{v}}$	·	✓	$\sqrt{\sqrt{2}}$	· ·	· ·	V	×	√ -	√ x			· ✓	· ✓	×		V	$\overline{\mathbf{v}}$			·	na	\checkmark			\checkmark		·	√ ×	· /		×
Little Lake (Narooma)	x	x	×	·		· •	x	<u> </u>	- -	· ✓	 ✓ ✓ 		x	na	na	- 	√ ×		2	1	?	x		na				- -		√	×		\checkmark	1	\checkmark	V X			×
Bullengella Lake	×	x	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	✓	< <		×	na	na	×	√ ×		?	1	?	×		na	\checkmark			\checkmark		\checkmark	×		\checkmark	- V	\checkmark	√ ×	- -		×
Nangudga Lake	×	x	×	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	✓	na	na	✓	√ ×		✓	✓	√	x		na	√ ,	/ v	<hr/>	\checkmark		\checkmark	×	_	✓ ✓	✓	\checkmark	√ ×	✓	✓	×
Corunna Lake	\checkmark	×	\checkmark	\checkmark	na	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	✓	√ ×	. 🗸	?	✓	?	×		na	v ,	/ v	 ✓ 	\checkmark		\checkmark	×		✓ ✓	✓	\checkmark	√ ×	✓	 ✓ 	×
Tilba Tilba Lake	\checkmark	×	\checkmark	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	✓	√ ×		?	✓	?	×		na	√ ,	/ v	< ✓	\checkmark	na	\checkmark	×	~	✓ ✓	✓	\checkmark	√ ×	✓	✓	×
Little Lake (Wallaga)	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	✓	√ ×	. ×	?	✓	?	×	×	na	√ ,	/ /	 ✓ 	\checkmark		\checkmark	×	✓	✓	 ✓ 	\checkmark	√ ×	✓	✓	×
Wallaga Lake	\checkmark	×	✓	\checkmark	na	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	✓	✓	\checkmark	✓	√ ×	. 🗸	V	\checkmark	✓	×	x	✓	√ ,	/ /	✓	\checkmark		\checkmark	×	✓	✓	 ✓ 	\checkmark	√ ×	✓	✓	×
Bermagui River	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	×	\checkmark	×	✓	√ ×		?	\checkmark	?	×	x	✓	√ ,	/ /	✓	\checkmark		\checkmark	×	✓	✓	 ✓ 	\checkmark	√ ×	✓	✓	×
Baragoot Lake	\checkmark	×	\checkmark	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	×	√ ×	. 🗸	?	✓	?	×	×	na	√ ,	/ /	< ✓	\checkmark	na	\checkmark	×	✓	✓	 ✓ 	\checkmark	√ ×	✓	✓	×
Cuttagee Lake	\checkmark	×	~	\checkmark	na	\checkmark	×	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	✓	√ ×		?	✓	?	×		na	√ ,	 	✓	\checkmark	na	\checkmark	×	✓	 ✓ 	 ✓ 	\checkmark	✓ ×	✓		×
Murrah River	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	?	×	✓	√ ×	. ×	?	\checkmark	?	×	x	?	√ ,	/ /	 ✓ 	\checkmark	na	\checkmark	×	✓	✓	 ✓ 	\checkmark	✓ ×	√	✓	×
Bunga Lagoon	×	x	×	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	×	√ ×	×	?	✓	?	×	×	na	× ,	 	✓	\checkmark		\checkmark		~		 Image: A start of the start of	\checkmark	✓ ×	√		×
Wapengo Lagoon	✓	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	?	×	✓	√ ×		?	✓	?	×	×	?	√ ,	/ /	< ✓	\checkmark		\checkmark			✓	 ✓ 	\checkmark	 ✓ × 	√	 ✓ 	×
Middle Lagoon	×	×	×	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	na	na	×	√ ×	×	?	✓	?	×	×	na	 ✓ 	/ /	< ✓	\checkmark		\checkmark	×		✓	 ✓ 	\checkmark	✓ ×	√		×
Nelson Lagoon	\checkmark	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	×	?	×	✓	√ ×		?	✓	?	×	×	?	 ✓ 	 	✓	\checkmark		\checkmark			✓ ✓	 ✓ 	\checkmark	✓ ×	√	✓	×
Bega River	\checkmark	×	~	\checkmark	na	\checkmark	\checkmark	\checkmark	✓	✓	√	✓	 ✓ 	\checkmark	×	✓	√ ×	 ✓ 	 ✓ 	\checkmark	\checkmark	×	×	✓	 ✓ 	 	✓	\checkmark		\checkmark	×		✓ ✓	 ✓ 	\checkmark	✓ ×	√	✓	×
Wallagoot Lake	\checkmark	×	~	\checkmark	na	\checkmark	\checkmark	\checkmark	✓	✓	√	✓	×	na	na	×	√ ×	×	?	✓	?	×	×	na	 ✓ 	/ /	✓	\checkmark		\checkmark			✓ ✓	 ✓ 	\checkmark	✓ ×	√	✓	×
Bournda Lagoon	×	×	×	\checkmark	na	\checkmark	×	\checkmark	\checkmark		√ √	✓	×	na	na	×	√ ×		?	✓	?	×	×	na	 ✓ 	 				\checkmark			✓ ✓	 ✓ 	\checkmark	✓ ×	√	✓	×
Back Lagoon	×	×	×	\checkmark	na	\checkmark	\checkmark	\checkmark	\checkmark	✓	 ✓ 	✓	✓	na	na	✓	√ ×	 ✓ 	 ✓ 	✓	✓	×	×	na	 ✓ 	 	✓	\checkmark	na	\checkmark		✓		 Image: A second s	\checkmark	✓ ×	√	✓	×
Merimbula Lake																		· 🗸											na		×								×

	Cor	nditi	on c	data	l			Est	tuar	y ph	ysic	Estuary physical data Derived data																Pres	ssur	e/stı	ess	or d	lata												
	NRC	C ind	licat	ors				Bas	se da	ata											[)eriv	ed d	ata			(Catc	hme	nt					Ripa	ar'n	F'sh	nore	Wate	erwa	ay		Clim	ate	
Estuary	Chlorophyll	Macroalgae	Turbidity	Seagrass	Mangrove	Saltmarsh	Fish	Coordinates	Geomorphology	Entrance condition		Evaporation	Surface area	Bathymetry	Tidal prism	Tidal planes	Tidal limite		area	ent above	Salinity (time series)	Estuary volume	Catchment runoff		er repl	Exchange efficiency	Tidal flushing	Population	Land-use	Runoff change	Sediment load	Sewerage	STP discharges	Nutrient load	Vegetation extent	Water extraction	Structures	Aquaculture	Entrance works	Entrance opening	Harvesting	Invasive species	Sea level rise	Rainfall change	Runoff change
Pambula River	✓	x	√	- √	- ✓	- √	- ✓	 ✓ 	- √	- ✓	√	√	√	- ✓	- √	- √	v		✓	×	\checkmark	✓	✓	✓	×	x	\checkmark	✓	 ✓ 	√	✓	√	na	√	×	✓	✓	√	\checkmark	√	\checkmark	×	√	√	×
Curalo Lagoon	✓	×	×	 ✓ 	na	\checkmark	 ✓ 	 ✓ 	 ✓ 	 ✓ 	✓	 ✓ 	\checkmark	 ✓ 	na	i na	a 🗸		✓	×	\checkmark	✓	✓	✓	×	×	na	\checkmark	\checkmark	✓	✓	√	na	√	×		\checkmark	\checkmark	✓	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Shadrachs Creek	×	×	×	×	×	×	×	\checkmark	 ✓ 	 ✓ 	✓	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	√	?	×	×	na	\checkmark	\checkmark	✓	√	\checkmark	na	✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Nullica River	×	×	×	\checkmark	_ ✓	- ✓	_ ✓	 ✓ 	 ✓ 	- ✓	 ✓ 	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	\checkmark	\checkmark	✓	✓	 ✓ 	na	✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Boydtown Creek	×	×	×	×	×	×	×	\checkmark	 ✓ 	 ✓ 	 ✓ 	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	\checkmark	\checkmark	✓	✓	 ✓ 	na	✓	×	~	\checkmark	\checkmark	✓	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Towamba River	\checkmark	×	\checkmark	\checkmark	\checkmark	_ ✓	_ ✓	 ✓ 	\checkmark	- ✓	✓	✓	\checkmark	×	?	×	√		\checkmark	×	×	?	\checkmark	?	×	×	?	\checkmark	\checkmark	\checkmark	✓	\checkmark	na	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Fisheries Creek	×	×	×	\checkmark	na	\checkmark	×	\checkmark	\checkmark	- ✓	 ✓ 	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	\checkmark	\checkmark	✓	\checkmark	\checkmark		✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Twofold Bay	×	×	×	\checkmark	na	\checkmark	×	\checkmark	 ✓ 	 ✓ 	✓	✓	\checkmark	×	?	×		د	\checkmark	×	×	?	✓	?	×	×	?	\checkmark	\checkmark	✓	√	\checkmark	na	✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Saltwater Creek (Eden)	×	×	×	×	×	×	×	\checkmark	 ✓ 	 ✓ 	✓	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	\checkmark	\checkmark	✓	√	\checkmark	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Woodburn Creek	×	×	×	×	×	×	×	\checkmark	 ✓ 	 ✓ 	✓	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	✓	\checkmark	✓	√	\checkmark	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Wonboyn River	×	×	×	✓	 ✓ 	 ✓ 	 ✓ 	✓	✓	 ✓ 	✓	✓	\checkmark	 ✓ 	- ✓	×	V		✓	×	✓	\checkmark	✓	✓	×	×	\checkmark	✓	\checkmark	✓	√	\checkmark	na	✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Merrica River	✓	×	\checkmark	na	ı na	na	× 1	\checkmark	✓	✓	✓	✓	\checkmark	×	na	i na	a 🗸		✓	×	×	?	\checkmark	?	×	×	na	✓	\checkmark	✓	√	\checkmark	na	✓	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	✓	\checkmark	×
Table Creek	×	×	×	\checkmark	 ✓ 	 ✓ 	×	\checkmark	\checkmark	✓	✓	✓	\checkmark	×	na	i na	a 🗸		\checkmark	×	×	?	✓	?	×	×	na	\checkmark	\checkmark	✓	✓	 ✓ 	na	✓	×	~	\checkmark	\checkmark	\checkmark	 Image: A set of the set of the	\checkmark	×	\checkmark	✓	×
Nadgee River	×	×	×	\checkmark	na	\checkmark	×	\checkmark	 ✓ 	 ✓ 	✓	✓	\checkmark	×	na	i na	a 🗸		✓	×	×	?	✓	?	×	×	na	\checkmark	√	✓	✓	 ✓ 	na	✓	×		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
Nadgee Lake	\checkmark	×	\checkmark	 ✓ 	na	\checkmark	×	\checkmark	 ✓ 	 ✓ 	√	✓	\checkmark	×	na	i na	a s	۲ .	✓	×	×	?	✓	?	×	×	na	✓	✓	√	\checkmark	\checkmark	na	~	×	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×

Note: Estuaries sampled during 08/09 are included to show all currently available data. Some intermittently open estuaries have had a tidal gauging during an extended opening period but 'na' is shown for tidal prism.

www.environment.nsw.gov.au