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Foreword

This report documents work undertaken during the Post-Commissioning Phase of
the Sydney Deepwater Outfalls Environmental Monitoring Program (EMP). It
describes the results of statistical analyses of Ocean Reference Station (ORS)
investigating aspects of the data relevant to the numerical modelling component of
the EMP.

The AWACS client for this work was the NSW Environment Protection Authority.
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Summary

In this report, Ocean Reference Station (ORS) data was used to answer a number of
questions of relevance to the Numerical Modelling Component of the EMP.

The appropriateness of 2D depth averaged modelling was assessed using one year of
ORS current and temperature data. The results showed that 2D depth averaged
modelling was rarely appropriate to the modelling of the ocean offshore of Sydney.
Based on a vertical temperature stratification of less than 1°C, a difference in
current directions of less than 45° and a difference in current speeds of less than
10 cm/s, 2D modelling would be applicable only 6.8% of the time. Conditions
where 2D modelling was suitable were generally of short duration, with 90% of
these occasions less than 11 hours in length.

Simple models using ORS current and wind data were used to estimate the
percentage of the time that flotables and plumes from the outfalls would reach the
coast. The results showed that for both flotables and plumes, landfall could be
expected about 20% of the time.
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1. Introduction

As part of the Environmental Monitoring Program (EMP) for Sydney's three
deepwater outfalls, numerical modelling of the outfall plumes is being undertaken.
Development of the modelling capability has been a continuous process,
progressing along with our increasing understanding of the important oceanographic
processes affecting the transport and dispersion of the effluent plumes. A summary
of the present status of the numerical modelling component of the EMP is given in
Peirson (1992).

In this report current, temperature and wind data from the Ocean Reference Station
(ORS) 3 km offshore of Sydney is used to answer a number of important questions
influencing the direction of the numerical modelling program. These are:

(1) How often is a 2D modelling approach applicable to offshore Sydney?

(i) How often would winds cause transport of surface floatables onto the
shore?

(iii) How often would a surfacing plume be transported onshore?
(iv) How often would a submerged plume be transported onshore?
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2. Ocean Reference Station Data

The ORS is located 3 km offshore of Bondi (Figure 1) and is owned by the Sydney
Water Board. Instrumentation on the ORS consists of a wave rider buoy, two
anemometers mounted 4.5 m and 5.0 m above the water surface, two S4 current
meters moored at 17 m and 52.5 m depth and a thermistor string.

In this report, current and temperature data from the ORS current meters and wind
data will be used. The S4 current meters record 5 minute averaged currents and an
instantaneous temperature at 5 minute intervals, while the anemometers record
instantaneous samples every 30 seconds which are averaged every 5 minutes.

The manufacturers specifications for the relevant instruments are given in Table 1
below. Further details of the ORS instrumentation are described in Lawson and
Treloar (1993).

Table 1: Instrument Specifications

Instrument Parameter Resolution Accuracy Noise Threshold
S4 current Current speed | 0.2 cm/s 2% +1cm/s | 0.2cm/s |0
meter Current dirn. | 0.5° 2"

Temperature | 0.05°C +(0.2°C
R M Young | Wind speed | +0.03 m/s 1 m/s
anemometer | Wind dirn. 3"

Hourly data has been used be used in this report rather than the raw 5 minute data,
as it was considered to be sufficient to resolve the time scales of variability to be
included in the numerical models. To obtain the hourly data, the 5 minute data has
been filtered using a Lanczos-Cosine filter with a cutoff period of two hours.
Further details of the filtering process are given in Lim and Cox (1991). Both the
raw and filtered data are stored on an EMP database located at Australian Water and
Coastal Studies Pty Ltd (AWACS).
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3. Applicability of 2D Modelling

3.1 General

In comparison to a depth averaged 2D model, a full 3D model is computationally
slow and expensive, and it is therefore preferable to use a 2D model wherever
possible. A proper assessment of the suitability of 2D modelling for a particular
location is important, however, as a 2D model may not give even qualitatively
correct results in situations where the current varies with depth, for example in two
layer flow or where there are wind generated currents.

The two main considerations which are of importance in assessing the applicability
of 2D modelling of the ocean offshore of Sydney are:

1. The vertical density profile.

The density of the receiving waters is dependent upon both temperature and
salinity. Since salinities are not measured at the ORS, assessing the
applicability of 2D depth averaged modelling must be restricted to a
consideration of the vertical temperature profile. If the temperature
difference between the top and bottom is small enough, the receiving waters
can be characterised by the one ambient density.

Data from the ORS typically shows a seasonal variation in the temperature
stratification, with up to 8 or 10°C temperature difference between 17 m and
52.5 m depth during late summer and less than 1°C during winter. Previous
statistical analyses of ORS temperature data (Cox, 1991, 1992a, 1992b and
1993) have obtained exceedance curves showing that the temperature
stratification is less than 1°C for about 30% of the time in any given year.

2. The vertical homogeneity of the horizontal component of the current.

If the top and bottom currents are of comparable size and in the same
direction the flow field can be characterised by a single depth-averaged
velocity vector.

For the purposes of this report, 2D depth-averaged modelling will be assumed to be
applicable when:

o the temperature stratification between 17 m and 52.5 m is less than 1°C
o there is less than 45° difference in the current directions at 17 m and 52.5 m
e the difference in current speeds at 17 m and 52.5 m depth is less than 10 cm/s

3.2 Data Analysis

In this section, hourly ORS data from the EMP database was partitioned using the
temperature stratification, AT, current directions, A6, , and the current speeds at
17 m and 52.5 m depth. The data used in this analysis was recorded over a 12
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month period (so as to include seasonal variability) between June 1991 and May
1992. The data was partitioned in three ways:

1. Using only the temperature stratification and the current directions. Bin sizes of
1°C for the temperature stratification and 45° for the current direction difference
were used. Where one or both of the current speeds were less than 3 cm/s, the
currents were taken to be co-flowing (A8, < 45°). The results of this analysis is
given in Section 3.3 below.

2. Using the temperature stratification, current directions and depth averaged

current speed, |UI, between 17 m and 52.5 m depth. These results are given in
Section 3.4.

3. In terms of all three of the above criteria for 2D modelling (temperature
stratification, current directions and difference in current speeds, AlUI, between
17 m and 52.5 m depth). Again, where one or both of the current speeds were
less than 3 cm/s, the currents were taken to be co-flowing (A8 < 45°). These
results are given in Section 3.5.

Statistics on the duration of events in which 2D depth averaged conditions applied
were also compiled. For the purpose of simplifying the analysis, these statistics
were calculated on the basis of the difference in current direction between 17 m and
52.5 m depth. Events where the temperature stratification is less than 1°C tend to be
mainly on relatively long time scales (seasonal) with fewer shorter events lasting for
days or hours (upwelling and downwelling events), while current speed and
direction are usually much more variable on shorter time scales. For this reason, the
most important factor limiting the duration of depth-averaged conditions is likely to
be the vertical difference in current directions rather than the temperature
stratification. Depth averaged conditions were defined as occurring when the
difference between ORS current directions at 17 m and 52.5 m depth was less than
45°. These results are given in Section 3.6.

3.3 Depth Averaged Assumption Based on Temperature Stratification and
Current Directions

The results of the analysis based only on the temperature stratification, AT, and
current direction difference between 17 m and 52.5 m depth, A8, is given in Table
2
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Table 2: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AB, between 17 m and 52.5 m depth

1°C 2°C 3°C 4°C < i
AT< | <AT< | <AT< | LAT< | AT< | <AT< | AT= | Total
1°C 2°C 3°C 4°C 5°C 6°C 6°C

0°< A8, <45° 10.5 | 10.1 6.1 3.9 4.7 3.5 1.5 40.2

45°< A, <90° 7.3 5.4 3.0 2.2 2.0 1.7 B 22,5

90°< A8, £135° 53 3.0 3.1 2.2 2.1 2.0 .6 18.3

135°< A8, <180° | 4.0 2.6 29 2.3 2.8 3.5 1.0 19.0

Total 27.3 | 21.1 | 15.1 | 10.6 | 11.7 | 10.6 | 3.7 | 100.0

Number of data points = 7175

The results show that considering temperature and current directions
simultaneously, a 2D depth averaged modelling approach (with AT less than 1°C
and A6, less than 45°) would be applicable only 10.5% of the time. Extending the
allowable temperature stratification for 2D modelling to 2°C, the depth averaged
approach would still only be applicable 20.6% of the time.

Considering the temperature stratification only, homogeneity (AT less than 1°C)
would occur about 27% of the time during the 12 month period, which is consistent
with the results of previous analyses of ORS data. Considering only the difference
in top and bottom current directions, homogeneity (A8 less than 45°) will occur
about 40% of the time.

3.4 Depth Averaged Assumption Based on Temperature Stratification, Current
Directions and Vertically Averaged Current Speed

This segment of work is an extension of that contained in Section 2.2. The data has
been further partitioned according to the depth averaged current speed, in intervals
of 10 cm/s. The results of the analysis based on the temperature stratification, AT,

current directions, A8, and the depth averaged current speed, I_GI, are given in
Tables 3-8 below:
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Table 3: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A9, between 17 m and 52.5 m depth

0 < Average current speed < 10 cm/s

1°C 2°C 3°C 4°C 5°C Total

AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT=

1°C 2°C 3°C 4°C 5°C 6°C 6°C
0°< AB,, <45° 2.4 .8 .8 4 .5 D " | 5.4
45°< AB, <90° 1.2 3 3 2 o 2 .0 2.4
90°< AB, <135° 1.6 5 3 4 b, 5 .0 3.7
135°< AB,, <180° 1.9 5 5 3 5 5 2 4.5
Total 7.1 2.2 2.1 1.4 1.4 1.5 % 16.0

Number of data points = 1147

Table 4: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AG, between 17 m and 52.5 m depth
10 < Average current speed < 20 cm/s

1°C 2C 3C 4°C 5°C Total

AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT2

1°C 2°C 3°C 4°C 5°C 6°C 6°C
0°< A8, <45° 3.7 2.3 1.9 1.0 1.5 1.5 3 12.1
45°< A8, <90° 44 | 24 1.2 1.0 1.2 8 1 11.1
90°< AB,, <135° 3.0 1.7 1.7 1.0 1.3 1.0 3 10.0
135°< A9, <180° | 1.8 1.8 2.0 1.3 1.7 1.7 5 10.7
Total 12.9 8.1 6.8 4.3 5.7 5.0 1.1 43.9

Number of data points = 3147

Table 5: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AG,, between 17 m and 52.5 m depth
20 < Average current speed < 30 cm/s

1°C | 2°C 3°C | 4°C 5°C Total

AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT2

1°C | 2°C 3°C 4°C | 5°C 6°C 6°C
0°< AQ;, <45° 2.7 2.4 1.7 1.0 1.5 1.2 .8 11.2
45°< AB,, <90° 1.6 2.2 1.0 .6 4 5 4 6.6
90°< AB,, <135° .6 | 7 i 4 .6 2 3.9
135°< AQ,, <180° = 3 3 2 .6 1.2 2 3.4
Total 5.1 5.5 3.7 29 3.0 34 1.6 25.2

Number of data points = 1805



AWACS INTERIM REPORT 92/01/14

13

Table 6: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A8, between 17 m and 52.5 m depth
30 < Average current speed < 40 cm/s

1°C | 2°C | 3°C | 4°C | 5°C Total
AT< | <AT< | <AT< | <AT< | <AT< | <AT< | AT
1°c | 2°c | 3°c | 4°Cc | 5°C | 6°C | 6°C
0°< Ay, <45° 14 | 25 | 12| 13| 8 4 3 | 79
45°< A, <90° 3 3 5 3 1 E] 1 19
90°< AB, <135° | .0 0 0 1 1 1 1 5
135°< A8, <180° | .0 0 0 1 0 0 0 2
Total 17 [ 29 181911 ] 6 6 | 105

Number of data points = 750

Table 7: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A8, between 17 m and 52.5 m depth
40 < Average current speed < 50 cm/s

1°C' | 2°%€¢ 1 3C | 8°C | 5C Total
AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT2
1°C | 2°C | 3°C | 4°C | 5°C | 6°C | 6°C
0°< AB,, <45° 3 1.5 ) 2 2 .0 1 29
45°< A8, 90° .0 2 1 0 .0 0 0 .3
90°< A8, <135° .0 .0 0 0 .0 .0 .0 .0
135°< A, <180° .0 .0 .0 .0 .0 .0 .0 .0
Total .3 17 il 2 2 0 1 3.2

Number of data points = 233

Table 8: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A8, between 17 m and 52.5 m depth

Average current speed = 50 cm/s

1°C | 2°C | 3°C | 4°C | 5°C Total
AT< | <AT< | SAT< | SAT< | SAT< | LAT< | AT
1°C | 2°C | 3°C | 4°C | 5°C | 6°C | 6°C
0°< AB,, <45° 2 .8 .0 0 3 .0 0 13
45°< AB, <90° .0 .0 .0 .0 0 .0 .0 .0
90°< Af,, <135° .0 .0 .0 0 .0 .0 .0 .0
135°< A8, <180° | .0 .0 .0 0 0 .0 0 .0
Total 2 .8 .0 .0 3 .0 .0 1.3
- Number of data points = 93
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The main conclusion from these results is that there is a strong correlation between
the strength of the average ambient current and the difference between the top and
bottom current directions. For low depth averaged current speeds (less than 20
cm/s), the currents at 17 m and 52.5 m depth are fairly evenly distributed between
co-flowing, counter-flowing and cross-tlowing. As the current strength increases,
co-tflowing currents become more likely (at the expense of the cross- and counter-
tlowing cases). This is because the strongest currents at the ORS usually occur
during times where the East Australian Current encroaches on the shelf, resulting in
strong southerly currents throughout the water column. When the longshore current
is weaker, currents due to other processes (including baroclinic coastal trapped
waves and internal waves and tides) dominate and the current directions are more
variable both spatially and with depth. High averaged current speeds were not
necessarily associated with high stratification.

3.5 Depth Averaged Assumption Based on Temperature Stratification, Current
Directions and Vertical Difference in Current Speeds

The results of the analysis based on the temperature stratification, AT, current
directions, A6y , and the difference in current speeds, A|U,|, between 17 m and
52.5 m depth are given in Tables 9-13 below:

Table 9: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A8, between 17 m and 52.5 m depth
0 < Difference in current speeds < 10 cm/s

1°C 2°C 3°C | 4°C 5°C Total
AT< | AT< | AT< | AT< | LAT< | AT< | AT
1°C 2°C 3°C 4°C 5°C 6°C 6°C

0°< AB,, <45° 68 | 30 [ 17 ] 9 [ 7 6 0 | 138
45°< A, <90° 60 | 28 [ 12| 7 | 7 4 1 [ 119
90°<A8,<135° | 3.7 | 1.6 | 1.6 | 8 | 1.0 ]| 7 1 | 95
135°<A6,<180° | 32 | 16 | 16 | 9 | 13| 13 | 4 | 105
Total 1981 90 [ 61 | 34 | 37 [ 30 | .6 | 457

Number of data points = 1851

Table 10: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AG;, between 17 m and 52.5 m depth
10 < Difference in current speeds < 20 cm/s

1°C 2°C 3°C 4°C 5°C Total
AT< | SAT< | AT< | KAT< | AT< | <AT< | AT2
1°C 2°C 3°C 4°C 5°C 6°C 6°C

0°< AB, <45° 2.9 2.8 1.5 9 1.4 1.1 b 10.8
45°< A9, <90° 1.3 1.5 .8 .5 .5 3 0 5.0
90°< AQ,, <135° 1.2 9 9 7 oD 4 g | 4.9
135°< Af,, <180° .6 .8 9 .8 9 1.0 2 5.1
Total 6.0 6.0 4.2 3.0 33 2.5 ) 25.8

Number of data points = 1854
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Table 11: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, A8, between 17 m and 52.5 m depth
20 < Difference in current speeds < 30 cm/s

1°C | 2°C | 3°C | 4°C | 5°C Total
AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT2
1°C 2°C 3°C 4°C 5°C 6°C 6°C
(°< AB;, <45° .8 2.3 1.3 .8 9 7 .6 7.4
45°< A8, £90° 1 .5 4 3 4 4 2 2.4
90°< AB,, <135° 2 2 3 4 3 4 2 2.1
135°< A6, <180° 1 2 2 3 4 5 2 1.7
Total 1.2 3.1 2.2 1.7 2.1 2.0 1.2 13.6

Number of data points = 979

Table 12: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AG;, between 17 m and 52.5 m depth
30 < Difference in current speeds < 40 cm/s

1°C | 2°C | 3°C | 4°C | 5°C Total

AT< | SAT< | SAT< | SAT< | <AT< | SAT< | AT2

1°C | 2°C | 3°C | 4°C | 5°C | 6°C | 6°C
0°< A8, <45° 1 1.0 1.1 3 1.3 7 . 5.4
45°< AB,; £90° 0 4 4 3 2 4 2 1.9
90°< A8, <135° .0 1 1 1 2 3 .3 1.0
135°%< AQ;, <180° .0 .0 A . i 4 2 12
Total 2 1.5 1.8 1.4 1.9 1.8 .8 9.4

Number of data points = 678

Table 13: Percentage Occurrences of Temperature Stratification, AT, and
Current Direction Difference, AG, between 17 m and 52.5 m depth
Difference in current speeds = 40 cm/s

1°C | 2°C 3°C | 4°C | 5°C Total

AT< | SAT< | SAT< | SAT< | SAT< | SAT< | AT2

1°C | 2°C | 3°C | 4°C | 5°C | 6°C | 6°C
0°< AQ,, <45° .1 1.1 5 5 4 4 4 34
45°< A, <90° .0 2 2 3 1 2 .1 1.1
90°< A6, <135° .0 1 .0 2 .1 1 B .6
135°< AQ,, <180° 0 .0 .0 .0 .0 2 .0 "
Total B 1.4 .8 1.0 .6 .9 .6 5.3
Number of data points = 383
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These results show that when the vertical temperature stratification, vertical
difference in current directions and current speeds are taken into account, 2D depth
averaged conditions are rarely achieved. While the additional condition that the
difference in current speeds from top to bottom be less than 10 cm/s is achieved
almost half of the time (45.7%), the applicability of 2D modelling based on all three
criteria (AT < 1°C, A8, <45° and A|U,| < 10 cm/s) is reduced to only 6.8% of the
time.

3.6 Duration of Depth Averaged Conditions

The exceedance curve for the duration of depth averaged conditions is shown in
Figure 2. These results show that events where depth-averaged conditions apply are
typically fairly short. Only 10% of the events where depth averaged conditions
apply (based on the difference between current directions at 17 m and 52.5 m depth
being less than 45°) were longer than 19 hours in length.
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4. Onshore Transport of Floatables

4.1 General

In this section, the duration of onshore wind events and the likelihood of onshore
transport of floatable materials from the outfalls will be investigated using one year
of hourly filtered ORS wind data, from June 1991 to May 1992.

4.2 Duration of Onshore Wind Events

Duration statistics for onshore wind events were firstly obtained for different
threshold velocities, which were used to define the start and end of each onshore
wind event. The ORS winds were resolved into a shore normal and a shore parallel
component and duration statistics were obtained for the onshore component only.
An angle of 13.5°T was used to define the longshore direction, for consistency with
previous analyses of ORS data. An onshore wind event with a threshold velocity of
4 m/s, for example, is an event where the onshore component of the wind is always
greater than 4 m/s, while an event with a threshold velocity of 0 m/s simply defines
an event which always has a positive onshore component.

The durations of onshore wind events for different threshold velocities are plotted
on Figure 3. Exceedance curves for events defined by different threshold velocities
are given in Figure 4. Figure 4 shows, for example, that 90% of onshore wind
events have a duration less than 20 hours. For onshore wind events where the
velocity is always above 6 m/s, 90% have a duration less than 11 hours.

A summary of the onshore wind events with different threshold velocities and
durations during the year are also given in tabular form in Appendix A. Table A-1
shows the number of onshore wind events for each threshold velocity and duration,
while Table A-5 gives the percentage of the time occupied by such events. Overall,
the wind at the ORS has an onshore component 48.5% of the time.

4.3 Condition for Floatables Reaching the Shoreline

Clearly, not all onshore wind events will be of sufficient strength or duration to
result in grease reaching the shore. For the purposes of this report, a simple model
using the 3% of the wind speed to estimate the advection speed of the particles, has
been used to determine which onshore wind events will result in grease landfalls.

To facilitate the calculations, the following assumptions have been made:

o grease from the outfalls always surfaces regardless of whether the plume
surfaces or is trapped below the surface;

» transport of grease is due to winds only and the grease moves in the direction of
the wind;

o the coastline is straight; and;

e winds are uniform over the Sydney coastline.
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If a particle moves a distance dX in an onshore direction, due to a wind with an
onshore velocity component w', in a time dT we have:

dX =0.03 w'dT

Since this relationship is linear, the condition for grease moving from the outtalls to
the shore during a particular onshore wind event can be written in terms of the
average velocity during the event, as:

X _,<003w, T,

where: X, is the outfall-land distance (measured perpendicular to
the shoreline)
w',, 1s the average onshore wind velocity during the event

T, 1s the duration of the event

As the outfall-land distance varies depending on the outfall (Bondi is closer to the
shore than North Head and Malabar) and the location up and down the coastline,
calculations have been carried out for outfall-land distances of 2 km, 3 km and
4 km.

The average velocities and durations for onshore wind events, showing those events
which will result in grease from the outfalls reaching the shore from a distance of
3 km, are shown in Figure 5. The period of time for which grease reaches the shore
during each onshore wind event is:

T, -X,./003w',

Summing over all onshore wind events results in grease reaching the shore a total of
27.4% of the time from 2 km, 23.9% from 3 km and 21.4% from 4 km offshore.

In addition to the other assumptions listed above, this analysis is simplistic in that
past events have been ignored. Only the effluent released from the outfalls during a
particular wind event has been considered. Obviously if there is still grease from a
previous onshore wind event close to the shore at the start of an onshore wind event,
grease will reach the shore sooner than predicted from the approach used. A better
approach would be to run a time-series deterministic grease transport model for one
year of wind data and compile statistics of the percentage of the time that grease
reaches the shoreline at various locations. Such a model would predict the location
of grease from the outfalls as a function of time, but would necessarily be much
more complex than the model used here. Additional processes such as dispersion of
the grease plumes and grease breakdown would need to be included to give realistic
results.
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5. Onshore Transport of Plumes

5.1 Surfacing Plumes

Since the thicknesses of surfacing plumes are typically 20 m to 40 m, the most
appropriate currents to use are those from the ORS current meter at 17 m depth.
Assuming that the waters of a surfacing plume would be transported towards the
coast at the rate of the onshore component of the ambient current at the ORS, a
simple analysis analogous to the equation for grease transport by winds can be used.
The current can be resolved into an onshore and a longshore component and the
analysis performed using the onshore component of the current.

5.1.1 Duration of Onshore Current Events

The duration of onshore current events for different threshold velocities is shown in
Figure 6. Exceedance curves for onshore current events with different threshold
velocities are given in Figure 7.

As was the case for the onshore wind events, most onshore current events are fairly
short lived, with 90% lasting for less than 21 hours. It is interesting to note that
onshore currents and onshore winds operate on similar time scales, even though
onshore currents do not normally result from onshore winds. Onshore and offshore
currents are usually associated with internal waves and tides or upwelling and
downwelling events (which result from longshore winds, or a strong longshore
current in the case of upwelling). Internal waves and tides probably account for
most of the shorter duration onshore current events measured by the ORS current
meter at 17 m while the longer duration events will mainly due to downwelling
events.

The number of events and percentage of the time occupied by onshore wind events
with different threshold velocities and durations during the year are given in tabular
form in Tables A-2 and A-6 in Appendix A. Overall, the ORS current at 17 m depth
has an onshore component 51.1% of the time.

5.1.2 Condition for Onshore Transport of Plumes

Using a similar approach to that used for grease transport, the percentage of the time
that a plume from the outfalls will reach the shore can be estimated. The
assumptions are:

e the plumes are advected with the prevailing current without spreading due to
ditfusion;

o the coastline is straight; and;

e the current is uniform over the Sydney coastline.

The condition for the plume moving from the outfalls to the shore during a
particular onshore current event can be written in terms of the average velocity
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during the event, as:

where: X

land

is the outfall-land distance (measured perpendicular to
the shoreline)
u', is the average onshore current velocity during the event

a

T, 1is the duration of the event

Average velocities and durations for onshore current events, and those events
resulting in onshore transport of the plumes from the outfalls from a distance of
3 km are shown in Figure 8. Summing over all onshore current events results the
plume reaching the shore a total ot 27.1% of the time from 2 km, 22.4% from 3 km
and 18.9% from 4 km offshore.

5.2 Submerged Plumes

This case is very similar to the case of the surfacing plume, except that for a
submerged plume, either the ORS current at 52.5 m depth or the depth-averaged
current may be more appropriate, depending on the height of rise and thickness of
the plume. Both of these cases have been considered.

As before, the currents were resolved into an onshore and a longshore component
and a persistence analysis was performed on the onshore component of the current
at 52.5 m or the depth averaged onshore component.

5.2.1 Duration of Onshore Current Events

The duration of onshore current events at 52.5 m depth for different threshold
velocities is shown in Figure 9. Exceedance curves for onshore current durations at
52.5 m depth with different threshold velocities are given in Figure 10. The
durations of onshore currents at 52.5m depth are similar to those at 17m depth,
although the current dynamics are such that the cross-shelf component of the
currents will normally be in opposite directions. Upwelling, downwelling and
internal waves all may result in two layered flow with opposing cross-shelf currents
in the top and bottom layers. Extended onshore current events at 52.5m are due to
upwelling events.

The duration of onshore current events based on depth-averaged currents at the ORS
is given in Figures 12 and 13.

The number of events and percentage of the time occupied by onshore depth-
averaged current events and onshore current events at 52.5 m depth with different
threshold velocities and durations during the year are given in tabular form in
Tables A-3, A-4, A-7 and A-8 in Appendix A. Overall, the ORS current at 52.5 m
had an onshore component 55.2% of the time, while the depth averaged ORS
current had an onshore component 63.9% of the time.

The percentage of onshore depth averaged currents is higher than either the
percentage of onshore currents at 17m or at 52.5m depth. As noted above,
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upwelling, downwelling and internal waves all may result in two layered cross-shelf
tlow with opposing currents in the top and bottom layers. This situation appears
tairly commonly in the ORS data, particularly during summer when conditions are
stratified. It appears that the relative current speeds at 17 m and 52.5 m under these
conditions are such that the depth-averaged cross-shelf component of the current is
onshore more often than it is offshore.

5.2.2 Condition for Onshore Transport of Plumes

Average velocities and durations for onshore current events, and those events
resulting in onshore transport of plumes in the lower and middle part of the water
column are shown in Figures 11 and 14 respectively.

Considering all events, the percentage of the time that a plume in the middle of the
water column would reach the shore is 24.4% from 2 km, 18.1% from 3 km and
14.7% trom 4 km offshore. The percentage of the time that a plume near the bottom
would reach the shore is 24.3% trom 2 km, 21.2% from 3 km and 19.4% trom 4 km
oftshore.

In the case of plumes trapped below the surface by a thermocline, the nearshore
dynamics of the thermocline will play an important role in such transport. Because
the plume is contained within waters of greater density than those above, upward
motion will be resisted. Events in which upwelling plays an important role are
obvious candidates for such occurrences. However, simple analyses based on model
results would indicate that such processes would also raise plume dilution by
between 1 and 2 orders of magnitude. Internal waves have also been identified as a
possible means of transporting trapped effluent higher in the water column
(Wallace, 1984).



AWACS INTERIM REPORT 92/01/14 2

6. Results and Conclusions

6.1 Applicability of 2D Modelling

The results show that a 3D model is generally required for modelling the coastal
waters offshore of Sydney, as 2D modelling is rarely applicable. Based on a
temperature stratification, AT, of less than 1°C, a difference in current directions,
ABy, of less than 45° and a difference in current speeds, A|U,|, of less than 10 cm/s,
2D modelling would be applicable only 6.8% of the time.

Considering only the temperature stratification and current direction criteria, 2D
depth averaged modelling would still be applicable only 10.5% of the time.

The results also showed that, based on the current directions only, conditions
suitable for 2D modelling are generally short lived. 90% of the occasions where 2D
modelling could be used were less than 11 hours in length.

A possible alternative to full 3D modelling is unstratified 3D modelling, where
stratification is included in the near-field component of the model (which describes
the initial momentum and buoyancy dominated spreading of the plume) but not in
the far-field component (which describes the advection and diffusion of the plume
beyond the initial dilution zone). The far field model still has a 3D velocity field.
This approach assumes that once the plume has risen to either a trap depth or the
surface, its far-field behaviour is relatively unaffected by stratification. The
applicability of this approach could be assessed by comparing the results of
unstratified 3D modelling and full 3D modelling for a range of different conditions.

6.2 Onshore Transport of Floatables and Plumes

The results of the study of onshore transport of floatables and plumes are
summarised in Table 14 below.

Table 14: Onshore Transport of Floatables and Plumes -
Summary of Results

Floatables Plumes
Surface Middle Bottom

% time material transported
in an onshore direction 48.7 51.1 63.9 552
% time shore reached from
an offshore distance of:

2km 27.4 271 244 243
3km 239 224 18.1 21.2
4 km 214 18.9 14.7 19.4

For both floatables and plumes, landfall could be expected around 20% of the time
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somewhere on the coastline, depending on the outfall-land distance and the location
of the plume in the water column. The incidences of onshore transport of non-
surfacing plumes would probably be much lower in practice because the sloping sea
bed would prevent further onshore movement of the plume unless accompanied by
upwelling at the coast. The incidence of onshore transport of flotables may be
higher than indicated as there may be grease from a previous event close to the
shoreline at the start of an onshore wind event.

The above results were obtained using simplistic models, and are intended only as a
first approximation of the likelihood of how often the plumes and grease from the
outfalls are likely to reach the shore. As pointed out above and in Chapters 4 and 5,
the approach used has many limitations. More realistic estimates will be available
when the more sophisticated numerical models in the EMP numerical modelling
suite have been run for sufficient data to enable similar statistics to be compiled.
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Table A-2: Number of Onshore Current Events at 17m Depth for Different Threshold

Velocities and Durations June 1991-May 1992
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Table A-3 (cont): Number of Onshore Current Events at 52.5m Depth for Different Threshold

Velocities and Durations June 1991-May 1992
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Table A-4: Number of Onshore Current Events Based on Average of Currents at 17m and
52.5m Depth for Different Threshold Velocities and Durations June 1991-May 1992
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Table A-6: Percentage of Time with Onshore Currents at 17m Depth for Different Threshold

Velocities and Durations June 1991-May 1992
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Table A-7: Percentage of Time with Onshore Currents at 52.5m Depth for Different Threshold
Velocities and Durations June 1991-May 1992
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